SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Introduction to Database Management System
Semester-11

Author- Dr. Chitra Desai (Atole)

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus
Data Base Management System
Learning Objective

- Students will be able to learn how to manage the data while using an IT enabled framework.

- Will be able to develop acumen about the system of data base i.e. what are the peripherals,
how they work and even coordination.

- Will learn about a number of ERP systems that will enable them to manage the related
components in real world.

- Student will be able to develop skills to manager data and use the same with utmost
efficiency.

Unit 1

What is database system, purpose of database system, view of data, relational databases, database
architecture, transaction management.

Unit 2

The importance of data models, Basic building blocks, Business rules, The evolution of data
models, Degrees of data abstraction.

Unit 3

Database design and ER Model:overview, ER-Model, Constraints, ER-Diagrams, ERD Issues,
weak entity sets, Codd’s rules, Relational Schemas, Introduction to UML Relational database
model: Logical view of data, keys, integrity rules. Relational Database design: features of good
relational database design, atomic domain and Normalization (INF, 2NF, 3NF, BCNF).

Unit 4

Relational algebra: introduction, Selection and projection, set operations, renaming, Joins,
Division, syntax, semantics. Operators, grouping and ungrouping, relational comparison.
Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra,
computational capabilities.

Unit 5

What is constraints, types of constrains, Integrity constraints, Views: Introduction to views, data
independence, security, updates on views, comparison between tables and views SQL: data
definition, aggregate function, Null Values, nested sub queries, Joined relations. Triggers.
Transaction management: ACID properties, serializability and concurrency control, Lock based
concurrency control (2PL, Deadlocks),Time stamping methods, optimistic methods, database
recovery management.

References

A Silberschatz, H Korth, S Sudarshan, “Database System and Concepts”, fifth Edition
McGraw-Hill

An introduction to Database System — Bipin Desai, Galgotia Publications

Database System: concept, Design & Application by S.K.Singh (Pearson Education)
Database management system by leon &leon (Vikas publishing House).

Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone,
and Tom Nadeau, “”, 4th Edition, 2005, Elsevier India Publications, New Delhi
Fundamentals of Database Management System — Gillenson, Wiley India

Rob, Coronel, “Database Systems”, Seventh Edition, Cengage Learning.

1. File Structure and Organization

1. INErOTUCTION. ...t
1.1 Primary Storage 1-2
1.2 Secondary Storage 1-3
1.3 . Tertiary Storage 1-7
1.4 Off-fine Storage 1-7
2. Logical @and PhYSICal FIIBSc..cociuririuiiiceeeiic e ees e,
3. Basic File Operationsccvvvuiiceeeeeeeeeeeeeceeee oo Cemeneetemnte e s stnae e e nteeeaans
3.1 Opening Files 1-9
3.2 Closing Files 1-10
3.3 Reading and Writing . 1-10
34 Seeking from a File 1-11
4. File Organizationc.cciirri ettt
4.1 Fixed Length Record 1-11
4.2 Variable Length Record 1-13
5. Types of File Organization
5.1 Files of Unordered Records (Heap Files) 1-15
5.2 File of Ordered Records (Sorted Files) 1-16
5.3 Hash Files 1-17
6. OVEIVIEW Of INABXES ..ottt ee e
6.1 Types of Indexes 1-22
SUMIMAIY .ottt e s bttt et et ee e s e e et et e te e et et et oo,
2. Database Management System
1. INEFOAUCHION. ..., —————
2. Basic Concept and Definitions...............c.ceieeeeieiereeeeeeeeeeee oo et oo oo,
3. Definition Of DBMSc.oiiiieieeee ettt e eeee e
4 File Processing System VS DBMSc.cvoiiiieeeeeeeeeeeeeeee oo evees s es e,
4.1 Limitations of File Processing System . 2-6
4.2 Comparison of File Processing System and DBMS 2-7
5. Advantages and Disadvantages of DBMS..............c.coovoieveueireeereeeseseeesee oo eesereoeersnns
5.1 Advantages of DBMS 2-8
5.2 Disadvantages of DBMS 2-10
6. Users of DBMS :
7. Viewof Datac.cccoveveecviiii e, e e e e e ee et st e aaae e e enneeres
7.1 Data Abstraction 2-12 ‘
8. The Three Level Architecture 0f DBMSocouuevoieeeeeeeeeeeeeee oo eeeeeeeeeees e
8.1 External or User View 2-13
8.2 Conceptual or Global View 2-13
8.3 Internal View 2-13
8.4 Data Independence 2-14
9. Overall System Structure
10. Features and Capabilities of DBMS
11. Data Model
12. Object Based Logical Model
13. Record Based LogiCal MOUE!.............c.ouiurieeeeeeeeeeeeeee oo e et
13.1 Relational Model 2-20
13.2 Network Mode! 2-22
13.3 Hierarchical Model2-23 : i
14, Entity Relationship MOGE!c.ouueeiieeeceeeeeeeeeeeee et 2-24
14.1 Entity Sets 2-25

Database Management System oie [1553

14.2 Entity Attributes ~ 2-26
14.3 Relationship Sets 2-27
14.4 Mapping Cardinalities 2-28
18. Entity Relationship Diagram (ERD) ..
16. Extended Features of ERD.........ccouoiioirierrernrnreeresseeeseessen et cicssss s ssnsnssassssasnsne e
16.1 Specialization and Generalization 2-34
16.2 Aftribute Inheritance 2-35

16.3 Aggregation 2-36
17. The Object-Oriented Model etteeeeeesreresseeseeiseteesettesttesrreeasteiseteenetaarnee e e aar e s s aranrres
18. Case Study for E-R Diagrams
Solved Case Studyc.c.uee.... feateetiiresteesiteeserasteesesneeeesatteerorteeeeeaattetaaraaener i ererea st es e e e s naeeaas
SUIMIMAIY 1.1ttt b e s e b b e sa e sa st e e beeb bRt b be s aE e b e g e s aaes s et satebtentanenane .
3. Relational Model
1. g1 goTo (1ot i o] o SO OO OO U PSP SPPIPR
2. B = 1111 T O U PO PPPPN
2.1 Propetties of Relations 3-2
3. KEBYS oottt e e e ereeeeterierreriteeesereenaareen et s
3.1 Primary Keys 3-7
3.2 Unique Keys 3-8
33 Surrogate Keys 3-9
34 Foreign Key 3-9
3.5 Super key 3-10
3.6 Candidate Key 3-11 : .
4, Relational Algebracveoieririrne s e e
4.1 Basic Operations 3-15
4.2 Addition Operations 3-20
Solved EXaMPIES ...ccvcvv et e
SUMIMANY ..ottt bbbt e e [P
4, SQL(Structured Query Language)
1. A Brief History of Databasescccevvivrininciniinicie e
2. Structured Query Language (SQL).........
3. SQL IS @ SEANGAIToeeeeecieececrie e s s et et e st s sa s s e rr s e e be s b e e e s n e e
3.1 SQL Data Definition Language (DDL) 4-4
3.2 SQL Data Manipulation Language (DML} 4-7
3.3 Arithmetic and Aggregate operators 4-20

3.4 SQL UPDATE Statement 4-27
35 SQL DELETE Statement 4-28

5. Relational Database Design

1. 4o o [0 o1 i o) £ TORRO O O OO URP STt
2. Integrity CONSIAINtS......c.oviiiiceric e
3. Normal FOrmccccoevevvcerenenircnnannns

4, FUNCHIONal DEPENABNCYccuviiriere ettt b s e s s b e s n s s
5. First NOIME FOIM.....cviieeiie e citie st s s e st sssae s s st san s b s s snesa s e s aae st beaaneeas
6. Second Normal FOMccceiiviiiienerce sttt snre s

7. Third NOTM@! FOMM «.evieeecciier et et seree s s s ba e s as s s e e e e rsa e e e st e
8. Boyce-Codd Normal FOrm (BCNF)......c.ccociiiiiiinin et
9. EXAMIPIES.....ooiviriieieireniineesreseeeireseses e cessesreesnssiesins ettt ete et ereeree e on et e e s e beenernanenenes

Solved Examples..

Database Management System oiie

| Chapter 1
FILE STRUCTURE

'AND
ORGANIZATION

1. Introduction
Database is an organized collection of interrelated data. Databases are stored physically as files of
records are typically stored on magnetic disks. Magnetic disk is one of the storage medium in
computers.

In computers, a storage medium is any technology (including devices and materials) used to place,
keep, and retrieve data. A medium is an element used in communicating a message on a storage
medium, the "messages" - in the form of data - are suspended for use when needed. The plural form
of this term is storage media. Although the term storage includes both primary storage (memory), a
storage medium usually means a place to hold secondary storage such as that on a hard disk or tape.

In practice, almost all computers use a variety of memory types, organized in a storage hierarchy
around the CPU, as a tradeoff between performance and cost. Generally, the lower a storage is in the
hierarchy, the lesser its bandwidth and the greater its access latency is from the CPU. This traditional
division of storage to primary, secondary, tertiary and off-line storage is also guided by cost per bit.
Figure 1.1 shows the various forms of storage areas.

Primary Storage

Primary Storage presently known as memory is the only one directly accessible to the CPU. The
CPU continuously reads instructions stored there and executes them. Any data actively operated on
is also stored there in uniform manner. As shown in the figure 1.1, traditionally there are two more
sub-layers of the primary storage, besides main large-capacity RAM:

i.

il.

Processor registers are located inside the processor. Each register typically holds a word of
data (often 32 or 64 bits). CPU instructions instruct the arithmetic and logic unit to perform
various calculations or other operations on this data (or with the help of it). Registers are
technically among the fastest of all forms of computer data storage, being switching transistors
integrated on the CPU's chip, and functioning as electronic "flip-flops"”.

Processor cache is an intermediate stage between ultra-fast registers and much slower main
memory. It is introduced solely to increase performance of the computer. Most actively used
information in the main memory is just duplicated in the cache memory, which is faster, but of
much lesser capacity. On the other hand, it is much slower, but much larger than processor
registers. Multi-level hierarchical cache setup is also commonly used—primary cache being
smallest, fastest and located inside the processor secondary cache being somewhat larger and
slower.

Primary storage

Central processing unit

Registers] Main memory
. Memory
Lor?i’tc Cache bus | Random access memory
U -
memory 256-1024 MB

Secondary storage : ;. ., Off-fine storage
Removable media drive
Mass storage device | i | CD-BW, DVD-RW drive :
Hard disk -
20-120 GB i : Removabie medium ;

I ¥ CD-RW

650 MB

Tertiary storage

Removable Robetic
media Ri;zg‘i/uﬁle access
drive system

Figure 1.1: Varlous types of storage areas

As the RAM types used for primary storage are volatile (cleared at start up), a computer containing

only such storage would not have a source to read instructions from, in order to start the computer.

Hence, non-volatile primary storage containing a small startup program (BIOS) is used to bootstrap

the computer, that is, to read a larger program from non-volatile secondary storage to RAM and start -
to execute it. A non-volatile technology used for this purpose is called ROM, for read-only memory

(the terminology may be somewhat confusing as most ROM types are also capable of random

access).

1.2 Secondary Storage

Secondary storage or storage in popular usage, differs from primary storage in that it is not directly
accessible by the CPU. :

The computer usually uses its input/output channels to access secondary storage and transfers
desired data using intermediate area in primary storage. Secondary storage does not lose the data
when the device is powered down—it is non-volatile. Per unit, it is typically also an order of
magnitude less expensive than primary storage.

Consequently, modern computer systems typically have an order of magnitude more secondary
storage than primary storage and data is kept for a longer time there.

In modern computers, hard disks are usually used as secondary storage. The time taken to access a
given byte of information stored on a hard disk is typically a few thousands of a second, or
milliseconds. By contrast, the time taken to access a given byte of information stored in random
access memory is measured in thousand-millionths of a second, or nanoseconds.

This illustrates the very significant access-time difference which distinguishes solid-state memory
from rotating magnetic storage devices: hard disks are typically about a million times slower than
memory. Rotating optical storage devices, such as CD and DVD drives, have even longer access
times.

Knowing how the data is likely organized can help in the construction of efficient database access.
applications.

Track

Sector

Cylinder

Arm
assembly

Piatter

Read/write head CD

- Spindle

Figure 1.2 : Physical disk structure

Figure 1.2 shows a disk structure capable of storing large quantities of data cheaply.

It is a non-volatile, i.e., memory is retained when power is removed. The hard disk is extremely slow

Megabytes (Mb) -- million (10° or 2%%) -- typical databases
Gigabytes (Gb) -- billion (10° or 2%9) -- large databases
Terabytes (Tb) -- trillion (10" or 2*°) - very large databases
Petabytes (Pb) -- quadrillion (10" or 2°°)

Exabytes (Xb) -- quintillion (10" or 2°°)

compared with CPU speeds.

Performance of a DBMS is largely a function of the number of disk /O operations that must be

Disk speeds are still rated in the milli-second range (thousandths).

CPU speeds are rated in the gigaHertz or nano-second range (billionths).

Million fold difference-- the CPU can carry out a million operations to each disk access.

performed. Buffering and disk caches can be used to speed up the access.

Intertrack gap
X
9%\

Figure 1.3: Disk data layout

P> Data Files are Decomposed Into Pages

These are fixed size pieces of contiguous information in the file (usually multiples of 512, 1024, or
2048 bytes)

. Page is the unit of exchange befween disk and main memory.

Disk are divided into page size blocks of storage.

. A page can be stored in any disk block.

An application’s request for read item is satisfied by:

1. Read entire page containing item to buffer in DB (disk input/output operation in msec).
2. Transfer item from buffer to application (primary memory operation in nsec).

An application’s request to change item is satisfied by

1. Read page confaining item to buffer in DBMS (if it is not already there).
2. Update item in DBMS buffer (nsec).
3. (Eventually) copy buffer page to page on disk (msec).

Here the term “block” means a unit of storage in RAM, on disk. To allocate space on disk for fast
access buffer pool management is done.

Buffer pool management means creating frames in RAM to hold blocks. One needs to decide the
policy to move blocks between RAM & disk.

Databases are maintained to store the information for future retrieval, however care should be taken
to see it that the retrieval is not time consuming and therefore one needs to understand the /O time
to access a page which can be as follows:

Seek Latency

Time to position heads over cylinder containing page (avg = ~10 - 20 ms)

.. This mechanical motion is extremely hard to make faster.

Rotational Latency

Additional time for platters to rotate so that start of block containing page is under head (avg = ~5 -
10 ms). This depends on the rotational speed of the disk.

. 1/2 rotation is the average rotational latency.
o 7200 rpm = 120 rev/sec
. 1/120 sec/rev * 1/2 = 1/240 = 4.17 msec

Transfer Time

Time for platter to rotate block containing page (depends on size of block and rotational speed of the
disk) over the read/write heads.

Latencies = Seek latency + Rotational latency
Total access time = Latencies + Transfer time

Goal - minimize average latency and reduce number of page transfers

Reducing Latency
For reducing the latency the following strategy and page trade off must be observed:
Strategy: Store pages containing related information close together on disk.

o Justification: If application accesses x, it will likely next access data related to x with high
probability.

. "locality principle”

Often this data might occur in another table--the data of a table are not necessarily kept to the
locality principle.

. When a disk block is input, then related information may already be in the buffer as well.

Page size tradeoff

. Large page size - data related to x stored in same page; hence additional page transfer can be
avoided. :
® - Small page size - reduce transfer time, reduce buffer size in main memory.

. Typical page size - 4096 bytes.

Some other examples of secondary storage technologies are: flash memory (for example: USB sticks
or keys), floppy disks, magnetic tape, paper tape, punch cards, standalone RAM disks, and zip
drives.

1.3 Tertiary Storage

Tertiary storage tertiary memory, provides a third level of storage. Typically it involves a robotic
mechanism which will mount (insert) and dismount removable mass storage media into a storage
device according to the system's demands; this data is often copied to secondary storage before use.

It is primarily used for archival of rarely accessed information since it is much slower than secondary
storage (for example 5-60 seconds vs. 1-10 milliseconds). This is primarily useful for extraordinarily
large data stores, accessed without human operators. Typical examples include tape libraries and
optical jukeboxes.

1.4 Off-line Storage

Off-line storage also known as disconnected storage, is computer data storage on a medium or a
device that is not under the control of a processing unit. The medium is recorded, usually in a
secondary or tertiary storage device, and then physically removed or disconnected. It must be
inserted or connected by a human operator before a computer can access it again. Unlike tertiary
storage, it cannot be accessed without human interaction.

Off-line storage is used to transfer information, since the detached medium can be easily physically
transported.

Additionally in case a disaster, for example a fire, destroys the original data, a medium in a remote
location will be probably unaffected, enabling disaster recovery. Off-line storage increases a general
information security, since it is physically inaccessible from a computer, and data confidentiality or
integrity cannot be affected by computer-based attack techniques.

Also, if the information stored for archival purposes is accessed seldom or never, off-line storage is
less expensive than tertiary storage.

2. Logical and Physical Files

In data processing, using an office metaphor, a file is a related to collection of records. For example,
you might put the records you have on each of your customers in a file. In turn, each record would
consist of fields for individual data items, such as customer name, customer number, customer
address, and so forth. By providing the same information in the same fields in each record (so that all
records are consistent), your file will be easily accessible for analysis and manipulation by a
computer program.

This use of the term has become somewhat less important with the advent of the database and its
emphasis on the table as a way of collecting record and field data. In mainframe systems, the term
data set is generally synonymous with file but implies a specific form of organization recognized by
a particular access method. Depending on the operating system, files (and data sets) are contained
within a catalog, directory, or folder.

In any computer system but especially in personal computers, a file is an entity of data available to
system users (including the system itself and its application programs) that is capable of being
manipulated as an entity (for example, moved from one file directory to another). The file must have
a unique name within its own directory. Some operating systems and applications describe files with
given formats by giving them a particular file name suffix. (The file name suffix is also known as a
file name extension.)

For example, a program or executable file is sometimes given or required to have an ".exe" suffix. In
general, the suffixes tend to be as descriptive of the formats as they can be within the limits of the
number of characters allowed for suffixes by the operating system.

Thus a file is a sequence of records. A record is a subdivision of a file, containing data related to a
single entity. And a field in a record is a subdivision of a record containing a single attribute of the
entity which the record describes. :

_

Usually all records in a file are of the same record type (Fixed-length records). In general, a block
contains one or more records specific to one file only:

° Spanned organization: Records can cross block boundaries.

. Unspanned organization: Records can’t cross block boundaries.
From a users perspective a file can be a physical file or a logical file.
Physical File: A collection of bytes stored on a disk or tape.

Logical File: A “Channel” (like a telephone line) that hides the details of the file’s location and
physical format to the program.

When a program wants to use a particular file, “data”, the operating system must find the physical
file called “data” and make the hookup by assigning a logical file to it. This logical file has a logical
name which is what is used inside the program.

3. Basic File Operations

The different operation that are performed on a file, after a
connection is obtained are opening, closing, reading writing and
seeking we will see each of these operations one by one, in next few
sections. SO0

3.1 Opening Files

Once, we have a logical file identifier hooked up to a physical file or
device, we need to declare the operations that we intend to do with
the file.

In general there are two basic operations:

I. Open an existing file or
ii. Create a new file, deleting any existing contents in the file.
Opening a file makes it ready for use within the application program. The file pointer is placed at the

beginning of the file and thus ready to start reading or writing. Creating a file also opens the file, in
the sense that its ready for use after creation.

3.2 Closing Files

Closing a file is like terminating a phone call or hanging up the phone. When a file is closed the
logical name or file descriptor is available for use with another file.

Closing a file that has been used for output also ensures that everything has been written to the file.

Data to and from secondary storage is always moved in terms of blocks rather than one byte at a
time.

Thus, the operating system puts the byte written into a buffer rather than send them to the see
storage. The buffer is then transferred as a block of data. Closing a file ensures that the buffer for
that file has been flushed of data and that everything written has been sent to the file.

Whenever an application program terminates normally, the files used by it are automatically closed
by the operating system. '

A close statement is needed within a programn, only to ensure that there is no accidental loss of data
in case of the program is interrupted also to free up logical filenames for reuse.

3.3 Reading and Writing

Reading and writing are fundamental to file processing; they are the actions that make file
processing an input/ output operation. Here we consider read and write at a relatively low level.

A low level read call requires three arguments or three pieces of information as given below.
Read (source_file, Destination_addr, size)

In the above read function,

Source_file —Specifies from where it should read from, i.e. the logical file name

Destination_addr — The address of the memory block, where the data read is to be
stored.

Size —The amount of information to be read, given as a byte count.
The write function can be given as;

write (Destination_file, source_addr, size)

In the above the

Destination file — logical file name that is used for sending the data.
Source_addr — First address of the memory block where the data is stored.
Size — The amount of information to be written in number of bytes.

e Stiuictire

3.4 Seeking from a File

Seek is used to directly move to a particular position in a file. i.e. when we may want to read/ write
- directly from a particular position in a file in order to have the above, we should be able to control
the read/ write pointer, so that we can directly read from any position or write to any position.

Thus, the action of moving directly to a certain position in a file is often called seeking.

A seek has minimum two arguments, as given below:

seek (source_file, offset)

In the above format

Source_file — The logical file name in which the seek will occur.

Offset—The number of position in the file, the pointer is to be moved from the start of the file.

4. File Organization

A file is organized logically as a sequence of records. Records are mapped onto disk blocks. Files are
provided as a basic construct in operating systems, so we assume the existence of an underlying file
system. Blocks are of a fixed size determined by the operating system. Record sizes vary. In
relational database, tuples of distinct relations may be of different sizes.

One approach to mapping database to files is to store records of one length in a given file. An
alternative is to structure files to accommodate variable-length records. (Fixed-length is easier to
implement.)

4.1 Fixed Length Record

A record which is predetermined to be the same length as the other records in the file.

| Record1 | Record2 | Record3 | Recordd | Record5
. The file is divided into records of equal size.
. All records within a file have the same size.

. Different files can have different length records.

. Programs which access the file must know the record length.

] Offset, or position, of the nth record of a file can be calculated.

o There is no external overhead for record separation.

. There may be internal fragmentation (unused space within records.)

° There will be no external fragmentation (unused space outside of records) except for deleted
records.

. Individual records can always be updated in place.

Consider a file of deposit of the form:
bname: char (22); account# : char(10); balance : real;

If we assume that each character occupies one byte, an integer occupies 4 bytes, and a real 8 bytes,
our deposit record is 40 bytes long.

The simplest approach is to use the first 40 bytes for the first record, the next 40 bytes for the second,
and so on. However, there are two problems with this approach.

1. It is difficult to delete a record from this structure. Space occupied must somehow be deleted,
or we need to mark deleted records so that they can be ignored.

2. Unless block size is a multiple of 40, some records will cross block boundaries. It would then
require two block accesses to read or write such a record.

When a record is deleted, we could move all successive records up one, which may require moving a
lot of records. We could instead move the last record into the “hole" created by the deleted record.

This changes the order the records are in. It turns out to be undesirable to move records to occupy
freed space, as moving requires block accesses. Also, insertions tend to be more frequent than
deletions. It is acceptable to leave the space open and wait for a subsequent insertion. This leads to a
need for additional structure in our file design.

So one solution is:

1. At the beginning of a file, allocate some bytes as a file header.

2. This header for now need only be used to store the address of the first record whose contents
are deleted.

3. This first record can then store the address of the second available record, and so on.

4. To insert a new record, we use the record pointed to by the header, and change the header
pointer to the next available record.

5. If no deleted records exist we add our new record to the end of the file.

Note: Use of pointers requires careful programming. If a record pointed to is moved or deleted, and
that pointer is not corrected, the pointer becomes a dangling pointer. Records pointed to are called pinned.

Fixed-length file insertions and deletions are relatively simple because “one size fits all". For
variable length, this is not the case.

Variable Length Record

A record which can differ in length from the other records of the file.

Delimited record

A variable length record which is terminated by a special character or sequence of characters.

>

Delimiter

A special character or group of characters stored after a field or record, which indicates the end of
the preceding unit. '

| Record 1 | # [Record2 | # [Record 3 [# | Record 4 | # | Record 5 | # |

The records within a file are followed by a delimiting byte or series of bytes.

The delimiter cannot occur within the records.

Records within a file can have different sizes.

Different files can have different length records.

Progranis which access the file must know the delimiter.

Offset, or position, of the nth record of a file cannot be calculated.

There is external overhead for record separation equal to the size of the delimiter per record.
There should be no internal fragmentation (unused space within records.)

There may be no external fragmentation (unused space outside of records) after file updating.

Individual records cannot always be updated in place.

Variable-length records: some possible schemes:

The file records are of the same record type but one or more of the fields are of varying size.

The file records are of the same record type but one or more of the fields may have multiple
values for the individual records. ’

The file records are of the same record type, but one or more of the fields are optional. |

The file include records of different types, each record will be preceded by a record type
indication: if a relation exists between EMPLOYEE and DEPARTMENT, then their
corresponding records are physically contiguous (clustered) in order to minimize /O
operations.

Records

A file where all the records are of the same
length is said to have fixed length records.

D Differentiate Fixed Length and Variable Length

One o'r mre of tHe fields can be of differing
lengths in each record, called variable length
records.

Advantage:

Access is fast because the computer knows
where each record starts.

e.g., if each record is 120 bytes long then

¢ The 1st record starts at [Start of File] + 0
bytes.

* The 2nd record starts at [Start of File] +
120 bytes

¢ The 3rd record starts at [Start of File] +
240 bytes etc.....

Advantage:

¢ The records will be smaller and will need
less storage space.

‘| Disadvantage:

Using fixed length records, the records are
usually larger and therefore need more
storage space and are slower to transfer
(load or save).

Disadvantage:

The computer will be unable to determine
where each record starts so processing the
records will be slower.

In fixed length, user cannot declare the
record with his/her convenience.

Variable length is nothing but user can declare
record with his/her convenience.

Fixed length is mentioned in static variable
creation.

Variable length is changed in dynamic variable
creation.

For fixed length files, we have to code
actual length.

We have to code actual length + 4 bytes for
variable length files.

When we declare array with its size it is
called as fixed length.

When we declare array with pointer it is called
variable length record.

Example inc
struct book
{
int bno;
char bookname[10];
bi
book bl[10];
b1 is array of 10 records.

Example
struct course
{
int courseno;
char coursename[10];
}*ptr; :
ptr is pointer to structure course.

S. Types of File Organization

Many alternatives for file organization exist, each ideal for some situation, and not so good in others:
. Heap Files: Suitable when typical access is a file scan retrieving all records.

. Sorted Files: Best if records must be retrieved in some order, ThreeTypes of Flle
or only a ‘range’ of records is needed. Organization

i Heap files
° Hashed Files: Good for equality selections. “ Sorted Hles
: il Hashed file

‘,«\bero

5.1 Files of Unordered Records (Heap Files) 3 1 5

An unordered file, sometimes called a heap file, is the simplest type
of file organization.

Records are placed in file in the same order as they are inserted. A
new record is inserted in the last page of the file; if there is
insufficient space in the last page, a new page is added to the file.

This makes insertion very efficient. However, as a heap file has no particular ordering with respect to
field values, a linear search must be performed to access a record. A linear search involves reading
pages from the file until the required is found. This makes retrievals from heap files that have more

than a few pages relatively slow, unless the retrieval involves .a large proportion of the records in the
file.

To delete a record, the required page first has to be retrieved, the record marked as deleted, and the
page written back to disk. The space with deleted records is not reused. Consequently, performance
progressively deteriorates as deletion occurs. This means that heap files have to be periodically
reorganized by the Database Administrator (DBA) to reclaim the unused space of deleted records.

Heap files are one of the best organizations for bulk loading data into a table, as records are inserted
at the end of the sequence; there is no overhead of calculating what page the record should go on.

5.2 File of Ordered Records (Sorted Files)

Organization that physically order the records of a file on disk based
on the values of one of the fields called the ordering field.

If the ordering field is also a key field of the file then the field is
called the ordering key for the file. Figure 1.4 shows an ordered file
with NAME as the ordering key field (assuming that employees
have distinct names). Reading the records in order of the ordering
key values becomes extremely efficient, because no sorting is
required. s

Using a search condition based on the value of an ordering key field results in faster access when the
binary search technique is used.

Ordering does not provide any advantage for random or ordered access of the records based on
values for the other non-ordering fields of the file. In this case, do a linear search for random access.

NAME SSN BIRTHDATE JOB SALARY SEX
Aeron Ed
Abbott Diane

Acosta More

Adams, John
Adams Rotin

Alert Sam |

Alexander, ED
Amed, Boti

Alan Sam | |

Alen Troy
Anders Kail

Andemon Roti |

Anderson Zah
Angel Joe

Archer SLE | |

Amold Mack
Amold Sleven

Allins Timothy |

Wong james
Wood Donald

Wood, Merry | |

Wright, Pam
Whvyatt Cheries

Zimmer Byion | I | [

Figure 1.4 : Sorted file

5.3 Hash Files

Provides very fast access to records on certain search conditions.
The search condition must be an equality condition on a hash field of
the file. In most cases, the hash field is also a key field of the file
(hash key).

» Hashing

To provide a function h, called a hash function, that is applied to the hash field value of a record and
yields the address of the disk block in which the record is stored. A search for the record within the
block can be carried out in a main memory buffer.

» Internal Hashing

Hashing is also used as an internal search structure within a program whenever a group of records is
accessed exclusively by using the value of one field. Hashing is implemented as a hash table through
the use of an array of records. Suppose that the array index range is from O to N-1; then we have N
slots whose addresses correspond to the array indexes.

We choose a hash function that transforms the hash field value into an integer between 0 and N-1.
One common hash function is the h(K) = K mod N function, this value is used for the record address.

®

H(K) \

Kmod N

|
L]
|
|

w
k]
S
S
o)
T
L

<+—— Nrecords slots —»

N-1
Ingeneral, rg N

Figure 1.5 : Internal Hashing

For example, consider a key,student id (six digits). Assume we have N = 100,000 record slots
numbered 00000 — 99999.

Then the hash function H(K): student_id mod 100000

— 085768 — 085768 mod 100000 = 85768

~ 134281 —134281 mod 100000 = 34281

- 101004 — 101004 mod 100000 = 1004

~ 100000 — 100000 mod 100000 = 0

~ 601004 — 601004 mod 100000 = 1004 (collision)

» Collision

A collision occurs when the hash field value of a record that is being inserted hashes to an address
that already contains a different record. The process of finding another position (after collision) is
called collision resolution.

Methods for collision resolution: Open addressing — Chaining — Multiple hashing

» External Hashing

IHashing for disk files is called external hashing. The target address space is made of buckets, each of
which holds multiple records. A bucket is either one disk block or a cluster of contiguous blocks.
The hashing function maps a the indexing field’s value into a relative bucket number.A table
maintained in the file header converts the bucket number into the corresponding disk block address.

Block address
on disk

L 1 N e D
w C]
|-

5 | Y

N-1 ! ~—— . -

\ /[
1]

Figure 1.6 : External Hashing

Hash file with relative bucket numbers 0 through N-1 can be seen in figure 1.6. Bucket number to
absolute disk block addresses are mapped. The disk blocks are the buckets that hold several data
records each.

6. Overview of Ihdexes

Index searching techniques were invented early on by computer programmers as a means of reducing
disk I/O, and they were incorporated into several proprietary file systems prior to the advent of
relational databases.

The classic analogy to help you understand database indexes is the index in the back of reference
books. Sure, if you wanted to find everything in the book about a particular subject you could start at
the beginning and scan every page, but it is much faster to look in a smaller, alphabetized subject
index that directs you to a list of pages. Then you need to scan only those pages to find information
about your chosen subject. Not everything in the book is indexed, however, so if your subject is not
mentioned in the index, you must still scan for it. Likewise, a database index is a look-up mechanism
that helps a DBMS find the information you request faster than it could with a full scan. As with
book indexes, not everything in the database is indexed, so an occasional scan may still be necessary.

The primary reason to build an index is to improve performance. But it is not the only reason to build
an index. The second reason has to do with enforcing uniqueness among rows stored in a database
table. Tables in a SQL database are usually designed with a primary key; that is, a set of columns
with a unique value that identifies a row in the table. When a new row is inserted into a table defined
with a primary key, it is up to the DBMS to ensure that the primary key value for that row is unique.
Performance would be unacceptable if the DBMS had to scan the entire table each time a new row

was inserted. Therefore, the accepted solution is to build a unique index on the primary-key columns
and let the DBMS use that as the physical enforcement mechanism for the primary key uniqueness
requirement. Some SQL products (such as Oracle7) implicitly create a unique index when you define
a primary key during table creation, while others (such as SQLBase) require you to create a unique
index before using a table created with a primary key.

The best things in file may be free, but indexes have their price: increased overhead for index
maintenance during the processing of insert, update, and delete statements. Not only will changes to
the database be slower, but if every column in a database is indexed, query performance might suffer
because index maintenance could consume the bulk of the CPU cycles. Plus, you might have locking
conflicts. Thus, the challenge is to find a happy medium between too few indexes and too many
indexes.

One way to meet this challenge is to look for situations in which indexes should be avoided. First,
you should avoid indexes on small tables. If a few disk reads is all it takes to scan an entire table,
then an index can actually slow things down because it requires an extra disk read or two. What
qualifies as a small table? The size limit varies depending on the hardware, operating system,
DBMS, and row size, but any table under 100 rows is a candidate. If there is any question in your
mind about whether to create an index on a small table, test the performance with and without the
index.

Second, you should avoid indexes on tables that will always be accessed by scans (such as
transaction tables in which each row is fetched by a cursor, or statistical tables that summarize with
aggregate functions). In these cases, an index would be redundant.

Third, you should avoid placing indexes on columns that have few distinct values. The best
candidates for indexing are columns with unique values; whereas the worst candidates are columns
with only a few possible values (the classic example is a column named "sex," which can have the
values "F" or "M"). It's more efficient for a DBMS to scan the entire table than to use an index to
find 50 percent of the rows. (I've even seen someone index a column with one distinct value, but
that's another story.)

It's worth noting that binary large object (BLOB) columns (also known as "long" or "raw" columns)
typically cannot be indexed. And for good reason: An index on a BLOB column would take up
almost as much disk space as the table. Therefore, performance would suffer.

So when should you create indexes? This is an easy decision to make. If a table will be populated by
interactive data entry, you should create indexes on the table immediately after you create the table.
On the other hand, if the table will be populated by bulk loading of data from a file or from another
table, you should create the indexes after the data is loaded. The rationale for delaying index creation
in the latter case is that it is much more efficient to build an index all at once instead of updating the
index every time a row is added. With interactive data entry, the index maintenance inefficiency is
generally transparent to the user, but with bulk loading it is very noticeable.

In its simplest form, the create index command looks like the following:

CREATE INDEX sales_1996_idx ON sales_1996 (customer, product);

In this example, the name of the index is "sales_1996_idx," the name of the table being indexed is
"sales_1996," and the columns that make up the index are "customer” and "product."

>
L.

A

i 4

Index Structure and Access

The top level of an index is usually held in memory. It is read once from disk at the start of
queries.

Each index entry points to either another level of the index, a data record, or a block of data
records.

The top level of the index is searched to find the range within which the desired record lies.
The appropriate part of the next level is read into memory from disc and searched.
This continues until the required data is found.

The use of indices reduce the amount of file which has to be searched.

Costing Index and File Access

The major cost of accessing an index is associated with reading in each of the intermediate
levels of the index from a disk (milliseconds).

Searching the index once it is in memory is comparatively inexpensive (microseconds).

The major cost of accessing data records involves waiting for the media to recover the
required blocks (milliseconds).

Some indexes mix the index blocks with the data blocks, which means that disk accesses can
be saved because the final level of the index is read into memory with the associated data
records.

The most common physical storage structure for SQL indexes is the B-tree. Almost every SQL
DBMS on the market supports B-tree indexes. Plus, some DBMSs support additional physical index
structures such as hashing and Index Sequential Access Method (ISAM). B-tree indexes are popular
because of their adaptability (the tree structure balances itself dynamically as a table grows, which
maintains an efficient index structure by minimizing the number of disk reads to find a given value
in the index). '

6.1

Types of Indexes

Indexes on Ordered vs. Unordered files
Dense vs. Non-dense (i.e., sparse) indexes
— Dense: An entry in the index files for each record of the data file.

— Sparse: Only some of the data records are represented in the index, often one index entry
per block of the data file.

Primary Indexes vs. Secondary Indexes
- Primary index: It is an index whose search key defines the sequential order of the file.

— Secondary index: Indices whose search key specifies an order different from sequential
order of the file.

Ordered Indexes vs Hash Indexes

— Ordered Indexes: Indexing fields stored in sorted order.

— Hash Indexes: Indexing fields stored using a hash function.
Single-level vs. Multi-lével

~ Single-level index is an ordered file and is searched using binary search.

— Multi-level ones are tree-structured that improve the search and require a more elaborate
search algorithm.

Index on a single indexing field — Index on multiple indexing fields (i.e., Composite Index).

— If a certain combination of fields is used frequently, set an index on multiple fields.

Dense and Sparse Indices

An index record, or index entry, consists of a search key value and
pointers to one or more records with that value as their search key
value. The pointer to a record consists of the identifier of a disk
block and an offset within the disk block to identify the record
within the block.

. Flle Structure and Organization

There are two types of ordered indices:

Dense Index

An index record appears for every search-key value in the file. In a dense clustering index, the index
record contains the search-key value and a pointer to the first data record with that search-key value.

The rest of the records with the same search-key value would be stored sequentially after the first
record, since because the index is a clustering one, records are sorted on the same search key. Dense
index implementations may store a list of pointers to all records with the same search-key value;
doing so is not essential for clustering indices.

» Sparse index

. Index records are created only for some of the records.

. To locate a record, we find the index record with the largest
search key value less than or equal to the search key value we
are looking for.

L] We start at that record pointed to by the index record, and
proceed along the pointers in the file (that is, sequentially)
until we find the desired record.

Brighton ~
Downtown \\(” Brighton 217 Gree 750
Mianus \\CF’ Downtown 101 Johnson 500
Perryridge \\(:’ Downtown 110 Peterson 600
Redwood \\ = Mianus 215 Smith 700
Round Hill | \g:? Perryridge 102 Hayes 400
<7,> Perryridge 201 Williams 900
C:; Perryridge 218 Lyle 700
Redwood 222 Lindsay 700
' - Round Hill | 305 | Turner 350

Figure 1.7: Dense index

Figures 1.7 and 1.8 show example for dense and sparse indices for account file. Suppose that we are
looking up for the Perryridge branch. Using the dense index of figure 1.7, we follow the pointer
directly to the first Perryridge record. We process this record, and follow the pointer in that record to
locate the next record in the search key (branch_name) order.

We continue processing records until we encounter a record for a branch other than Perryridge. If we
are using the sparse index as in figure 1.8 , we do not find an index entry for “Perryridge” . Since the
last entry before Perryridge is Mianus, we follow that pointer. We then read the account file in
sequential order until we find the first Perryridge record, and begin processing at that point.

Brighton ~
Mianus —\{/ Brighton 217 Gree 750
Redwood | ~— <:’ Downtown 101 Johnson 500
<> Downtown | 110 Peterson | 600
= Mianus 215 | Smith 700
Cj Perryridge 102 Hayes 400
<>> Perryridge 201 Williams 900
C:; Perryridge 218 | Lyle 700
g Redwood | 222 | Lindsay | 700
-s Round Hill 305 Turner 350

Figure 1.8: Sparse index

Dense indices are faster in general, but sparse indices require less space and impose less maintenance
for insertions and deletions.

There is a trade off that a system designer must make between access time and space overhead.
Although the decision regarding this trade off depends on the specific application, a good
compromise is to have a sparse index with one index entry per block.

» Why s this good?
. Biggest cost is in bringing a block into main memory.

. We are guaranteed to have the correct block with this method, unless record is on an ovérﬂow
block (actually could be several blocks).

L Index size still small.

Summary

In computer system there are several types of data storage. They are classified by the speed
with which they can access data, by their cost per unit of data to buy the memory, and by their
reliability. Among the media available are cache, main memory, flash memory, magnetic disk,
optical disk and magnetic tapes.

We can organize a file as a sequence of records mapped onto disk blocks. One approach to
mapping the database files is to use several files, and to store records of only one fixed fength
in any given file. An alternative is to structure files so that they can accommodate multiple
lengths for records.

Many alternatives for file organization exist, each ideal for some situation, and not so good in
others: Heap files which are suitable when typical access is a file scan retrieving all records.
Sorted Files, best if records must be retrieved in some order, or only a ‘range’ of records is
needed. Hashed Files, good for equality selections.

Index sequential files are one of the oldest index schemes used in database system. To permit
fast retrieval of records in search key order, records are stored sequentially, and out of order
records are chained together. To allow fast random access, we use an index structure.

There are two types of indices that we can use, i.e., dense indices and sparse indices. Dense
indices contain entries for every search key value, whereas sparse indices contain entries only
for some search key values.

Chapter 2
DATABASE

MANAGEMENT
SYSTEM

1. Iintroduction

~ A need to store huge amount of data in a database for future retrieval is an obli gatory requirement of
any organization in this era of information technology. An organization may be a single venture
such as a firm with all its units located at a single campus governed by only one board of Directors
or it may consists of number of units which could be considered a separate organization.

Typically an organization needs to collect, process, store and distribute data for its human, financial
and material resources and functions. The functions may include: admission process of a college or
university, maintaining stock record and performing inventory control, sales report and forecast, etc.
All this information can be stored into the database and effectively managed by an efficient Database
Management System (DBMS). Thus a Database management system is a software system,

Database systems are all-pervading today and most people interact, either directly or indirectly, with
databases many times every day.

A major purpose of the database system is to provide users with an abstract view of the data. That is
the system hides certain details of how the data are stored and maintain. Depending upon the
creation, maintenance and users of database the users of DBMS can be classified as in section 3.5.
Before getting in to more details of DBMS, let us first see what exactly is database?

Over the course of last four decades of the twentieth century, use of database grew in all enterprises.
In early days very few users interacted with the database directly, but with the advent of Internet
revolution of the late 1990 sharply increased direct user access to database.

2. Basic Concept and Definitions

The concept of maintaining and managing data is not a new one.

Data can be defined as a collection of facts and figures. It is generated in any type of transaction of
any organization.

For example, An amount withdrawn from a particular account on a particular day is a data which is
generated in any bank. Each organization has to record the details of such transactions and use it for
further processing like preparing balance sheet, profit and loss account etc. When such a processing
is done on data, it is called as information. So information is a processed form of data, which helps
the managers to make decision.

Data and Information can broadly be differentiated as follows:

1. | Data is a collection of facts and figures. nformatio processed form of data.
2. | No conclusion can be drawn on data. Information can be used to draw conclusion.
3. | Data cannot be used for decision-making. Information plays an important role in decision
making.
4. | Data is a raw material for processing. It is | Information can also be further utilized to
processed further. produce highly identified information.
5. | ltis not time bound. It is time bound.

The group of inter-related data referring to a particular type forms a record. The group of records
referring to a specific common type forms a’database.

A collection of data designed to be used by different people is called a database. It is a collection of
interrelated data stored together with controlled redundancy to serve one or more applications. It is
organized in such a way that a computer program can quickly select desired pieces of data.

To access information from a database, you need a database management system (DBMS).
Databases are widely used and some of the representative examples are as below:

1. Banking: For customer information, accounts, loans, and banking transaction.
2. Airlines: For reservation and schedule information.

3. Universities and big educational organizations: For student information, course registration,
libraries and grades.

Credit card transactions: For purpose on credit cards and generation of monthly statements.

Telecommunications: For keeping records of call made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about the
communication network.

6. Finance: For storing information about holdings, sales, and purchases of financial instruments
such as stocks and bonds.

- Sales: For customer product — sales and purchase information.
On-line retailers: For online order tracking.
Manufacturing: For management of Supply chain and for tracking production of items.

10. Human resources: For employee information and payrolls.

3. Definition of DBMS

A Database Management System (DBMS) is a collection of interrelated data and a set of programs
to access those data.

The collection of data, usually referred to as the database, contains information relevant to an
enterprise. The primary goal of DBMS is to provide a way to store and retrieve database information
that is both convenient and efficient.

Database is designed to manage large bodies of information. Management of data involves both
defining structures for storage of information and providing mechanism for the manipulation of
information. In addition the database system must ensure the safety of information stored, despite
system crashes or attempts at unauthorized access. If data is to be shared among several users, the
system must avoid possible anomalous results.

More specifically, a DBMS is a general purpose software system facilitating each of the following
(with respect to a database):

1. Definition: Specifying data types (and other constraints to which the data must conform) and
" data organization.

2. Construction: Insertion, updation and deletion of data as per need of transaction.
3. Manipulation: Querying, updating, report generation.

4. Sharing: Allowing multiple users and programs to access the database simultaneously.

5. System protection: Preventing database from becoming corrupted when hardware or software
failures occur.

6. Security protection: Preventing unauthorized or malicious access to database.
A database together with the DBMS software is referred to as a database system.

End-user

v

Application programs/
queries

Database

Figure 2.1: Database System

A DBMS is a complex set of software programs that controls the organization, storage, management,
and retrieval of data in a database. DBMS are categorized according to their data structures or types,
some time DBMS is also known as Database Manager. It is a set of prewritten programs that are
used to store, update and retrieve a Database. A DBMS includes:

A modeling language is used to define the schema of each database hosted in the DBMS, according
to the DBMS data model. The four most common types of organizations are the hierarchical,
network, relational and object models. Inverted lists and other methods are also used.

A given database management system may provide one or more of the four models. The optimal
structure depends on the natural organization of the application's data, and on the application's
requirements (which include transaction rate (speed), reliability, maintainability, scalability,
and cost).

Data structures (fields, records, files and objects) optimized to deal with very large amounts of data
stored on a permanent data storage device (which implies relatively slow access compared to volatile
main memory).

A database query language and report writer to allow users to interactively interrogate the database,
analyze its data and update it according to the users privileges on data.

It also controls the security of the database. Data security prevents unauthorized users from viewing
or updating the database. Using passwords, users are allowed access to the entire database or subsets
of it called subschemas. For example, an employee database can contain all the data about an
individual employee, but one group of users may be authorized to view only payroll data, while
others are allowed access to only work history and medical data.

If the DBMS provides a way to interactively enter and update the database, as well as interrogate it,
this capability allows for managing personal databases. However, it may not leave an audit trail of
actions or provide the kinds of controls necessary in a multi-user organization. These controls are
only available when a set of application programs are customized for each data entry and updating
function.

A transaction mechanism, that ideally would guarantee the ACID properties, in order to ensure data
integrity, despite concurrent user accesses (concurrency control) and faults (fault tolerance).

It also maintains the integrity of the data in the database. The DBMS can maintain the integrity of
the database by not allowing more than one user to update the same record at the same time. The
DBMS can help prevent duplicate records via unique index constraints; for example, no two
customers with the same customer numbers (key fields) can be entered into the database.

The DBMS accepts requests for data from the application program and instructs the operating system
to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as the organization's
information requirements change. New categories of data can be added to the database without
disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the detail
onto another computer that uses another DBMS better suited for random inquiries and analysis.
Overall systems design decisions are performed by data administrators and systems analysts.
Detailed database design is performed by database administrators.

Database servers are specially designed computers that hold the actual databases and run only the
DBMS and related software. Database servers are usually multiprocessor computers, with RAID disk
arrays used for stable storage. Connected to one or more servers via a high-speed channel, hardware
database accelerators are also used in large volume transaction processing environments.

DBMSs are found at the heart of most database applications. Sometimes DBMSs are built around a
private multitasking kernel with built-in networking support although nowadays these functions are
left to the operating system.

4. File Processing System Vs DBMS

Conventional File Systems Vs DBMS

» File Systems

In File Processing System, system allows permanent records in various files and it needs different
application programs to extract records from and add records to, the appropriate files. Each time
when need arises system programmers write these application programs to meet the needs so that
system acquires more application programs, more files which will be time consuming always. It
creates complexity, reduces efficiency of the system. File processing system has a number of many
disadvantages, which we are going to discuss here.

Database system arouses in response to early methods of computerized management of commercial
data. The earlier ways to keep the information on a computer was to use operating system files.
These files could be manipulated by number of application programs. Thus a typical file-processing
system is supported by a conventional operating system wherein a system stores permanent records
in various files, and it needs different application programs to extract records from, and add records
to, the appropriate files.

Keeping the organizational information in a file processing system has a number of major
disadvantages as discussed in next section.

4.1 Limitations of File Processing System

The various limitations of file processing system are:

1. Data redundancy and inconsistency: Different programmers
may create files which may be stored at different locations in
different data structures and there is a possibility of
information duplication. For example, the information of
student name and roll no. may appear in administration
section storing student information for official records and it
may also appear in library section for book issue and return
purpose. This redundancy leads to higher storage and access
cost. In addition it may lead to data inconsistency.

2. Difficulty in accessing data: Conventional file processing & %
environment do not allow needed data to be retrieved in a '% 1 E
convenient and efficient manner. More responsive data % ¥
retrieval systems are required for general use.

3. Data isolation: Because data are scattered in various files,
and files may be in different formats, writing new application
programs to retrieve the appropriate data is difficult.

4. Integrity problem: The data values stored in the database must satisfy certain types of
consistency constraints because when new constraints are added, it is difficult to change the
program to enforce them. The problem is compounded when constraints involve several data
items from different files. _ '

s. Atomicity problem: In case of failure occurrence it is necessary that the data be restored to
the consistent state that existed prior to failure. It is difficult to ensure atomicity in a
conventional file processing system.

6. Concurrent access anomalies: In multiple user environments, interaction of concurrent
updates is possible and may result in inconsistent data due to lack of supervision. In
conventional file processing system, it is difficult to provide supervision but data may be
accessed by many different application programs that have not been coordinated previously.

7. Security problem: In database system every user should not have all the privileges to access
the data however as the application programs are added to the file-processing system in an ad
hoc manner, enforcing such security constraint is difficult.

4.2 Comparison of File Processing System and DBMS
. . . . o‘“be"

The difficulties in the file-processing system propped up the *

development of database management system. Almost the entire kS 1

shortfall of file-processing. system was covered by database
management system. Consider an organization/enterprise that is
organized as a collection of departments/offices.

Each department has certain data processing "needs", many of which

are unique to it. In the file processing approach, each department
would control a collection of relevant data files and software
applications to manipulate that data.

ii.

jii.

iv.

vi.

5.

5.1

Difference between a File Processing System and a DBMS

Data Redundancy and Inconsistency: In file processing system various files having various
formats & program may be written in different languages so same information is stored in
number. of locations. This is wastage of space and storing garbage data also. At that time
redundancy occurs so data becomes inconsistent.

But this is avoided in DBMS.

Difficulty in Accessing Data: In file processing system, if user wants a new
application /report then he has to do such work separately. It means file processing system do
not allow to retrieve data in efficient manner. But this is allowed in DBMS.

Data Isolation: In file processing system, data are scattered, i.e., it is not isolated so it
becomes very difficult to access data.

But in DBMS data is isolated so we can easily access the data.

Integrity Problem: In file processing system we cannot enforce data integrity on any data
values so integrity problem arises. But in DBMS it is possible. We enforce it using integrity
constraints.

Atomicity: Atomicity problem occurs in file processing system, but it does not occur in
DBMS.

Security: It is not possible to assign privileges on data and user(s) in file processing system,
which is easily possible in DBMS.

Advantages and Disadvantages of DBMS

Advantages of DBMS

1. Controlling Redundancy: Data redundancy (such as tends to
occur in the "file processing” approach) leads to wasted
storage space, duplication of effort (when multiple copies of a
datum need to be updated), and a higher likelihood of the
introduction of inconsistency.

On the other hand, redundancy can be used to improve
performance of queries. Indexes, for example, are entirely
redundant, but help the DBMS in processing queries more
quickly.

Another example of using redundancy to improve
performance is to store an "extra" field in order to avoid the
need to access other tables. A DBMS should provide the
capability to automatically enforce the rule that no
inconsistencies are introduced when data is updated.

Restricting Unautherized Access: A DBMS should provide
a security and authorization subsystem, which is used for
specifying restrictions on user accounts. Common kinds of
restrictions are to allow read-only access (no updating), or
access only to a subset of the data.

Providing Persistent Storage for Program Objects: Object-
oriented database systems make it easier for complex runtime
objects (e.g., lists, trees) to be saved in secondary storage so
as to survive beyond program termination and to be
retrievable at a later time. '

Providing Storage Structures for Efficient Query
Processing: The DBMS maintains indexes (typically in the
form of trees and/or hash tables) that are utilized to improve
the execution time of queries and updates. (The choice of
which indexes to create and maintain is part of physical
database design and tuning and is the responsibility of the DBA.

The query processing and optimization module is responsible for choosing an efficient
query execution plan for each query submitted to the system.

Providing Backup and Recovery: The subsystem having this responsibility ensures that
recovery is possible in the case of a system crash during execution of one or more
transactions.

Providing Multiple User Interfaces: For example, query languages for casual users,
programming language interfaces for application programmers, forms and/or command codes
for parametric users, menu-driven interfaces for stand-alone users.

Representing Complex Relationships among Data: A DBMS should have the capability to
represent such relationships and to retrieve related data quickly.

Enforcing Integrity Constraints: The data values stored in the database must satisfy certain
types of consistency constraints. For example, the balance of a bank account should never fall
below a particular amount say Rs. 1000/- or if the value of rate-of-interest is not fed by the
operator it should be taken to be 12%. The DBMS provides the capabilities for defining and
enforcing these types of constraints.

10. Permitting Inferencing and Actions via Rules: In a deductive database system, one may
specify declarative rules that allow the database to infer new data. Example, figure out which
students are on academic probation. Such capabilities would take the place of application
programs that would be used to ascertain such information otherwise.

Active database systems go one step further by allowing "active rules" that can be used to
initiate actions automatically.

5.2 Disadvantages of DBMS

A significant disadvantage of the DBMS system is cost. In addition to the cost of purchasing or
developing the software, the hardware has to be upgraded to allow for the extensive programs and
the work spaces required for their execution and storage. The processing overhead introduced by the
DBMS to implement security, integrity and sharing of data causes a degradation of the response and
through-put times. An additional cost is that of migration from a traditionally separate application
environment to an integrated one.

While centralization reduces duplication, the lack of duplication requires that the database be
adequately backed up so that in the case of failure the data can be recovered. Backup and recovery
operations are fairly complex in a DBMS environment, and this becomes worse in a concurrent
multi-user database system. Further more a database system requires a certain amount of controlled
redundancies to enable access to related data items.

Centralization also means that the data is accessible from a single source, namely the database. This
increases the potential severity of security breaches and disruption of the operation of the
organization because of downtime and failures.

6. Users of DBMS

The basic objective of a database system is to store new information and retrieve stored information
as far as possible at the lower processing cost. Thus the following are the users of the database.
These apply to "large" databases, not "personal” databases that are defined, constructed, and used by
a single person via, say, Microsoft Access.

1. Database Administrator (DBA): This is the chief administrator, who oversees and manages
the database system (including the data and software). Duties include authorizing users to
access the database, coordinating/monitoring its use, acquiring hardware/software for
upgrades, etc. In large organizations, the DBA might have a support staff.

Database Designers: They are responsible for identifying the
data to be stored and for choosing an appropriate way to
organize it. They also define views for different categories of
users. The final design must be able to support the
requirements of all the user sub-groups.

End Users: These are persons who access the database for
querying, updating, and report generation. They are main
reasons for database's existence.

® Casual end users: Use database occasionally, needing
different information each time; use query language to
specify their requests; typically middle- or high-level
managers.
® Naive/Parametric end users: Typically the biggest group
of users; frequently query/update the database using
standard canned transactions that have been carefully
programmed and tested in advance. Examples:
— Bank tellers check account balances, post withdrawals/deposits
— Reservation clerks for airlines, hotels, etc., check availability of seats/rooms and make
reservations, :
— Shipping clerks (e.g., at UPS) who use buttons, bar code scanners, etc., to update status
of in-transit packages.

e Sophisticated end users: Engineers, scientists, business analysts who implement their own
applications to meet their complex needs.

® Stand-alone users: Use personal databases, possibly employing a special-purpose
(for example: financial) software package.

System Analysts, Application Programmers, Software Engineers

o System Analysts: determine needs of end users, especially naive and parametric users,
and develop specifications for canned transactions that meet these needs.

] Application Programmers: These people write the codes of the programs according to
the designs suggested by the database designers. They also test, debug, document and
maintain these programs.

7. View of Data

A database system is a collection of interrelated data and a set of programs that allow users to access
and modify these data. A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data stored and maintained.

7.1 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led
designers to use complex data structures to represent data in the database. Since many
database-system users are not computer trained, developers hide the complexity from users through
several levels of abstraction, to simplify user’s interactions with the system.

8. The Three Level Architecture of DBMS

View A ViewB t----0oe- View Z

Mapping supplied by DBMS

|

Conceptual view

Mapping supplied by DBMS/OS

Internal view

Figure 2.2: Three level architecture of DBMS

The architecture shown in figure 2.2 of DBMS is divided into three levels: the external level, the
conceptual level and the internal level. The view at each of these levels is described by a scheme.

A scheme is an outline or a plan that describes the records and relationships existing in a view. It
describes the way in which entities at one level of abstraction can be mapped to the next level.

8.1 External or User View

The external or user view is at the highest level of database abstraction where only those portions of
the database of concern to the user or application program are included. :

Any number of user views may exist for a given global or conceptual view. Each external view is
described by means of a scheme called an external schema. The external schema consists of the
definition of the logical records and the relationship in the external view.

8.2 Conceptual or Global View

One conceptual view represents the entire database and there is only one conceptual scheme per
database. The description of data at this level is in a format independent of its physical
representation. It also includes features that specify the checks to retain data consistency and
integrity.

8.3 Internal View

It is at the lowest level of abstraction, closest to the physical storage method used. It indicates how
data will be stored and describes the data structure and access methods to be used by the database.
The internal view is expressed by the internal schema, which contains the definition of the stored
record, the method of representing the data fields, and access aids used.

8.4 Data Independence

LN

&

3 -1
3 1 5
%@‘ o5

o @y R

L

Data Independence, basically concerned with storing and accessing
of data, is independent of storage devices or locations or we can say
logical data independence and physical data independence is there.

There are two distinct levels of data independence:
i Logical Data Independence
ii. Physical Data Independence

Three levels of abstraction, along with the mappings from internal to conceptual and from
conceptual to external; provide two distinct levels of data independence: logical data independence
and physical data independence.

Logical data independence indicates that the conceptual schema can be changed without affecting
the existing external schema. The change would be absorbed by the mapping between the external
and conceptual level. It is achieved by providing the external level or user view of the database.

Physical data independence indicates that the physical storage structure or device used for storing
data could be changed without necessitating a change in the conceptual view or any of the external
view. The change would be absorbed by mapping between the conceptual and internal levels.

9. Overall System Structure

Query processor and Data manager together form the core of
DBMS. Data manager (transaction manager, lock manager, files and
index structures, buffer manager, disk space manager and recovery
manager) is sometimes referred to as a database control system.

One of the functions of the data manager is to convert operations in
the user’s queries coming directly via the query processor or
indirectly via an application program from the user’s logical view to
a physical file system. The data may come from a web forms,
several applications or SQL interface in the form of SQL command.

The data manager is then responsible for interfacing with the file system. In addition, the tasks of
enforcing constraints to maintain the consistency and integrity of the data, as well as its security, are

also performed by the concurrent users is under the control of the data manager. It is also entrusted
with back up and recovery option.

[Web forms] (Applications) [SQL interface)

i -

1 -

H e
& SQL commands 4~
4
Plan executor Parser
Operator evaluator Optimizer

Query processor

) ¥ Files and index structures >
Transaction
manager l
. .| Recovery
> Buffer manager manager
Lock i
manager .
» Disk space manager P
Concurrency control DBMS
Index files
) System catalog
Data files
Database

Figure 2.3: Overall database system structure

Responsibilities for the structure of the files and managing the file space rests with the file manager.
It is also responsible for locating the block containing the required record, requesting this block from
the disk manager, and transmitting the required record to the data manager.

Once the data is retrieved by formulating a query in the data manipulation language, the query
processor is used to interpret the online user’s query and convert it into an efficient series of
operations in a form capable of being sent to the data manager for execution.

The disk manager is the part of the operating system of the host computer and all physical input and
output operations are performed by it. The disk manager transfers the block or page requested by the
file manager so that the later need not be concerned with the physical characteristics of the
underlying storage media.

10. Features and Capabilities of DBMS

One can characterize a DBMS as an "attribute management system"
where attributes are small chunks of information that describe
something. For example, "colour" is an attribute of a car. The value
of the attribute may be a color such as "red", "blue" or "silver".

Alternatively, and especially in connection with the relational model
of database management, the relation between attributes drawn from
a specified set of domains can be seen as being primary. For
instance, the database might indicate that a car that was originally
"red" might fade to "pink" in time, provided it was of some
particular "make" with an inferior paint job. Such higher parity
relationships provide information on all of the underlying domains at
the same time, with none of them being privileged above the others.

Throughout recent history specialized databases have existed for scientific, geospatial, imaging,
document storage and like uses. Functionality drawn from such applications has lately begun
appearing in mainstream DBMSs as well. However, the main focus there, at least when aimed at the
commercial data processing market, is still on descriptive attributes on repetitive record structures.

Thus, the DBMSs of today roll together frequently-needed services or features of attribute
management. By externalizing such functionality to the DBMS, applications effectively share code
with each other and are relieved of much internal complexity. Features commonly offered by
database management systems include:

» Query abllity

Querying is the process of requesting attribute information from various perspectives and
combinations of factors. Example: "How many 2-door cars in Texas are green?”

A database query language and report writer allow users to interactively interrogate the database,
analyze its data and update it according to the users privileges on data. It also controls the security of
the database. Data security prevents unauthorized users from viewing or updating the database.
Using passwords, users are allowed access to the entire database or subsets of it called subschemas.
For example, an employee database can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data, while others are allowed access to only

also performed by the concurrent users is under the control of the data manager. It is also entrusted

with back up and recovery option.

(Web forms] (Applications) [SQL interface)

S H P
-~ \
- -
-~ -
S~
-

_— v T
% SQL commands 4~

\ 4

Pian executor Parser

Operator evaluator Optimizer

Query processor

] » Files and index structures < >
Transaction
manager l
R .| Recovery
Buffer manager manager
Lock ¢
manager :
» Disk space manager P
Concurrency control DBMS
Index files
) System catalog
Data files
Database

Figure 2.3: Overall database system structure

Responsibilities for the structure of the files and managing the file space rests

the disk manager, and transmitting the required record to the data manager.

Once the data is retrieved by formulating a query in the data manipulation language, the query
an efficient series of

processor is used to interpret the online user’s query and convert it into
operations in a form capable of being sent to the data manager for execution.

with the file manager.
It is also responsible for locating the block containing the required record, requesting this block from

The disk manager is the part of the operating system of the host computer and all physical input and
output operations are performed by it. The disk manager transfers the block or page requested by the
file manager so that the later need not be concerned with the physical characteristics of the
underlying storage media.

10. Features and Capabilities of DBMS

One can characterize a DBMS as an "attribute management system" e"«\ber"»
where attributes are small chunks of information that describe 5 2 2
something. For example, "colour" is an attribute of a car. The value o

of the attribute may be a color such as "red", "blue" or "silver".

Alternatively, and especially in connection with the relational model
of database management, the relation between attributes drawn from
a specified set of domains can be seen as being primary. For
instance, the database might indicate that a car that was originally
"red" might fade to "pink" in time, provided it was of some
particular "make" with an inferior paint job. Such higher parity
relationships provide information on all of the underlying domains at
the same time, with none of them being privileged above the others.

Throughout recent history specialized databases have existed for scientific, geospatial, imaging,
document storage and like uses. Functionality drawn from such applications has lately begun
appearing in mainstream DBMSs as well. However, the main focus there, at least when aimed at the
commercial data processing market, is still on descriptive attributes on repetitive record structures.

Thus, the DBMSs of today roll together frequently-needed services or features of attribute
management. By externalizing such functionality to the DBMS, applications effectively share code
with each other and are relieved of much internal complexity. Features commonly offered by
database management systems include:

» Query abllity

Querying is the process of requesting attribute information from various perspectives and
combinations of factors. Example: "How many 2-door cars in Texas are green?"

A database query language and report writer allow users to interactively interrogate the database,
analyze its data and update it according to the users privileges on data. It also controls the security of
the database. Data security prevents unauthorized users from viewing or updating the database.
Using passwords, users are allowed access to the entire database or subsets of it called subschemas.
For example, an employee database can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data, while others are allowed access to only

work history and medical data. If the DBMS provides a way to interactively enter and update the
database, as well as interrogate it, this capability allows for managing personal databases. However it
may not leave an audit trail of actions or provide the kinds of controls necessary in a multi-user
organization. These controls are only available when a set of application programs are customized
for each data entry and updating function.

> Backup and Replication

Copies of attributes need to be made regularly in case primary disks or other equipment fails. A
periodic copy of attributes may also be created for a distant organization that cannot readily access
the original. DBMS usually provide utilities to facilitate the process of extracting and disseminating
attribute sets.

When data is replicated between database servers, so that the information remains consistent
throughout the database system and users cannot tell or even know which server in the DBMS they
are using, the system is said to exhibit replication transparency.

» Rule enforcement
Often one wants to apply rules to attributes so that the attributes are clean and reliable.

For example, we may have a rule that says each car can have only one engine associated with it
(identified by Engine Number). If somebody tries to associate a second engine with a given car, we
want the DBMS to deny such a request and display an error message. However, with changes in the
model specification such as, in this example, hybrid gas-electric cars, rules may need to change.
Ideally such rules should be able to be added and removed as needed without significant data layout
redesign.

» Security

Often it is desirable to limit who can see or change which attributes or groups of attributes. This may
be managed directly by individual, or by the assignment of individuals and privileges to groups, or

(in the most elaborate models) through the assignment of individuals and groups to roles which are
then granted entitlements. ,

P Computation

There are common computations requested on attributes such as counting, summing, averaging,
sorting, grouping, cross-referencing, etc. Rather than have each computer application implement
these from scratch, they can rely on the DBMS to supply such calculations.

Often one wants to know who accessed what attributes, what was changed, and when it was
changed. Logging services allow this by keeping a record of access occurrences and changes.

» Automated Optimization

If there are frequently occurring usage patterns or requests, some DBMS can adjust themselves to
improve the speed of those interactions. In some cases the DBMS will merely provide tools to
monitor performance, allowing a human expert to make the necessary adjustments after reviewing
the statistics collected.

11. Data Model

Beneath the structure of database is the data model. A collection of conceptual tools for describing
data, data relationships, data semantics, and data consistency constraints. The model provides the
way to describe the design of a database at the physical, logical and view level.

A data model is therefore an abstract model that describes how data is represented and accessed.
The term data model has two generally accepted meanings:

1. A data model theory, i.e., a formal description of how data may be structured and accessed.

2. A data model instance, i.e., applying a data model theory to create a pract1ca1 data model
instance for some particular application.

A data model theory has three main components:

o The structural part: A collection of data structures which are used to create databases
representing the entities or objects modeled by the database.

. The integrity part: A collection of rules governing the constraints placed on these data
structures to ensure structural integrity.

. The manipulation part: A collection of operators which can be applied to the data structures,
to update and query the data contained in the database.

For example, in the relational model, the structural part is based on a modified concept of the
mathematical relation; the integrity part is expressed in first-order logic and the manipulation part is
expressed using the relational algebra, tuple calculus and domain calculus. Data modeling is the
process of creating a data model instance by applying a data model theory. This is typically done to
solve some business enterprise requirement.

Business requirements are normally captured by a semantic logical data model. This is transformed
into a physical data model instance from which is generated a physical database.

For example, a data modeler may use a data modeling tool to create an Entity Relationship Diagram
(ERD) of the Corporate data repository of some business enterprise. This model is transformed into a
relational model, which in turn generates a relational database.

A data model instance may be one of three kinds:

i. A conceptual schema: (data model) Describes the semantics
of a domain, being the scope of the model. For example, it
may be a model of the interest area of an organization or
industry. This consists of entity classes (representing kinds of
things of significance in the domain) and relationships
(assertions about associations between pairs of entity classes).

A conceptual schema specifies the kinds of facts or propositions that can be expressed using
the model. In that sense, it defines the allowed expressions in an artificial language' with a
scope that is limited by the scope of the model.

ii. A logical schema: (data model) Describes the semantics, as represented by a particular data
manipulation technology. This consists of descriptions of tables and columns, object oriented
classes, and XML tags, among other things.

iii. A physical schema: (data model) Describes the physical means by which data are stored. This
is concerned with partitions, CPUs, tablespaces, and the like.

12.

Object Based Logical Model

Object-based logical models:

o Describe data at the conceptual and view levels.

. Provide fairly flexible structuring capabilities.

o Allow one to specify data constraints explicitly.

o Over 30 such models, including

Entity-relationship model
Object-oriented model
Binary model

Semantic data model
Infological model
Functional data model

13. Record Based Logical Model

» Record Based Logical Model

In record based logical model, the database is structured in fixed format records of several types.
Each record type is made up of a fixed number of fields or attributes and each field is usually of
fixed length.

These models do not include a mechanism for the direct representation of code in the database as in
case of object-based model.

Instead, there are separate languages that are associated with models to express database queries.
These data models are:

. Entity Relationship Model
. Network Model
] Hierarchical Model

13.1 Relational Model

RDBMS (Relational Database Management System) is a database
based on the relational model developed by E.F. Codd.

A relational database allows the definition of data structures, storage
and retrieval operations and integrity constraints. In such a database
the data and relations between them are organised in tables. A table
is a collection of records and each record in a table contains the
same fields.

Properties of Relational Tables:

. Values are atomic.

° Each row is unique.

. Column values are of the same kind.

° The sequence of columns is insignificant.
. The sequence of rows is insignificant.

. Each column has a unique name.

Certain fields may be designated as keys, which mean that searches for specific values of that field
will use indexing to speed them up.

Where fields in two different tables take values from the same set, a join operation can be performed
to select related records in the two tables by matching values in those fields. Often, but not always,
the fields will have the same name in both tables.

For example, an "orders" table might contain (customer-ID, product-code) pairs and a "products"
table might contain (product-code, price) pairs so to calculate a given customer's bill you would sum
the prices of all products ordered by that customer by joining on the product-code fields of the two tables.

This can be extended to joining multiple tables on multiple fields. Because these relationships are
only specified at retreival time, relational databases are classed as dynamic database management
system.

The Relational database model is based on the Relational Algebra.

Consider a database for the Universal Hockey League (UHL), a professional ice hockey league with
teams worldwide. It consists of a number of divisions and numerous franchises under each division.
The database records statistics on teams, players, and divisions of the league.

A franchise may relocate to another city and may become part of a different division. Players are
under contract to a franchise and are obliged to move with it. This relationship between a franchise
and a division is called a team. We use the word team synonymously with franchise.

Consequently, we can view a franchise as consisting of a collection of players, coaches, and general
manager. Players are required to play for a given franchise for the entire season.

Using the relational model, each of the entities in the UHL can be represented by a relation as shown
in figure.

The description of the relation is given by a relation scheme. A relation scheme is like a type
declaration in a programming language. It indicated the attributes included in the scheme, their
order, and their domain.

However, we will ignore the domain for the present.

Player Franchise
Name Birth Place Birth Date Franchise Name | Year Establishment
Zax Viviteer Prague, Czec 1962-04-29 Bullets 1975
Barn Kurri Dtroit, Mich 1964-07-17 Rodeos 1921
Todd Smith Roseu, Minn 1963-05-09 Zippers 1917
Dave Fisher Edmonton, Canada | 1959-10-28 Blades 1982
Ozzy Xavier Kiruna, Sweden 1965-02-19 Flashers 1967
Gaston Vabr Montreal, Canada 1958-05-12
Ken Dorky Chicago, {11 1958-05-13
Brain Lafontaine | Paris, France 1960-07-03 Division
Bruce McTavish | Rio, Brazil 1966-10-27 Division Name
Dave O'Connell | Dublin, Ireland 1967-03-16 Northern
Johny Brent Boston, Mass 1964-12-23 Southern

European

World

Forward

Name Franchise Name Year Goals Assists
Barn Kurri Bullets 1986 40 67
Bruce Mc Tavish Bullets 1986 30 37
Todd Smith Rodeos 1986 17 - 24
Ozzy Xavier Blades 1986 56 119
Ozzy Xavier Flashers 1985 36 49
Gaston Vabr Flashers 1986 16 22
Zax Viviteer Blades 1986 80 162
Dave O'Connell Zippers 1986 12 59
Brain Lafontaine Zippers 1985 10 40
Brain Lafontaine Zippers 1986 22 73
Goal

Name Franchise_Name Year Goals_Against_Avg | Shoutouts
Davy Fisher Blades 1986 1.21 7

Ken Dorky Zippers 1986 4.02 4
Johny Brent Flashers 1986 7.61 0
Dave Fisher Flashers 1985 3.05 5
Team

Franchise_Name Division_Name Year City Points
Flashers Northern 1986 Sr. Loues 93
Blades Northern 1986 Edmonton 97
Zippers European 1985 Paris 82
Zippers Northern 1986 Montreal 99
Rodeos Southern 1986 Rio 65
Bullets World 1986 Tokyo 79

Figure 2.4: Relational model for UHL

13.2 Network Model

The popularity of the network data model coincided with the
popularity of the hierarchical data model. Some data were more
naturally modeled with more than one parent per child. So, the
network model permitted the modeling of many-to-many
relationships in data. In 1971, the Conference on Data Systems
Languages (CODASYL) formally defined the network model. The
basic data modeling construct in the network model is the set
construct.

A set consists of an owner record type, a set name, and a member record type. A member record type
can have that role in more than one set, hence the multiparent concept is supported. An owner record
type can also be a member or owner in another set. The data model is a simple network, and link and
intersection record types (called junction records by IDMS) may exist, as well as sets between them.
Thus, the complete network of relationships is represented by several pairwise sets; in each set some
(one) record type is owner (at the tail of the network arrow) and one or more record types are
members (at the head of the relationship arrow). Usually, a set defines a 1:M relationship,
although 1:1 is permitted. The CODASYL network model is based on mathematical set theory.

l Players l |Franchise] [Division l
A

Forward —-Pr_Te—a-nT_lﬂ———
i | ||
|

l Year] [Goalsl |Assistsl I City I [Year | [Points]

I I
I Yearl Goals_aginns IShutoutsl

t_Avg

Figure 2.5: Network model for UHL

13.3 Hierarchical Model

The hierarchical data model organizes data in a tree structure. There is a hierarchy of parent and
child data segments. This structure implies that a record can have repeating information, generally in
the child data segments. Data in a series of records, which have a set of field values attached to it. It
collects all the instances of a specific record together as a record type.

These record types are the equivalent of tables in the relational model, and with the individual
records being the equivalent of rows.

To create links between these record types, the hierarchical model uses Parent Child Relationships.
These are a 1: N mapping between record types. This is done by using trees, like set theory used in
the relational model, "borrowed" from maths.

For example, an organization might store information about an employee, such as name, employee
number, department, salary. The organization might also store information about an employee's
children, such as name and date of birth.

The employee and children data forms a hierarchy, where the employee data represents the parent
segment and the children data represents the child segment. If an employee has three children, then
there would be three child segments associated with one employee segment. In a hierarchical
database, the parent-child relationship is one to many.

This restricts a child segment to having only one parent segment. Hierarchical DBMSs were popular
from the late 1960s, with the introduction of IBM's Information Management System (IMS) DBMS,
through the 1970s.

(A) (B)
| Division] f Division !
l |
| Franchise I [Franchise l
I Year_City_Points l » l Year_City_Points I

L Player]

|
Goal Forward
o]

Figure 2.6: Hierarchical model for UHL

As we see above figure representing the many-to-many relationship between the players and the
franchise requires the introduction of certain redundancies and inefficiencies. Furthermore, we
cannot follow the player hierarchy to find out the players score in a given year. This involves, first
finding the franchises to which a player belonged from the PLAYER hierarchy, second, we have to
refer to the DIVISION hierarchy to find this FRANCHISE and, for the required year, find the player
and his score.

In the hierarchical model, we can have duplications of certain record occurrences as well.

14. Entity Relationship Model

The entity-relationship model (or ER model) is a way of graphically representing the logical
relationships of entities (or objects) in order to create a database. The ER model was first proposed
by Peter Pin-Shan Chen of Massachusetts Institute of Technology (MIT) in the 1970s.

In ER modeling, the structure for a database is portrayed as a diagram, called an entity-relationship
diagram (or ER diagram), that resembles the graphical breakdown of a sentence into its grammatical
parts.

Entities are rendered as points, polygons, circles, or ovals. Relationships are portrayed as lines
connecting the points, polygons, circles, or ovals.

Any ER diagram has an equivalent relational table, and any relational table has an equivalent ER
diagram. ER diagramming is an invaluable aid to engineers in the design, optimization, and
debugging of database programs.

In a logical sense, entities are the equivalent of grammatical nouns, such as employees, departments,
products, or networks. An entity can be defined by means of its properties, called attributes.

Relationships are the equivalent of verbs or associations, such as the act of purchasing, the act of
repairing, being a member of a group, or being a supervisor of a department.

A relationship can be defined according to the number of entities associated with it, known as the
degree.

A database can be modeled in ER as:

. A collection of entities.

. Relationship among entities.
An entity is an object that exists and is distinguishable from other objects.
Example: specific person, company, event, plant

14.1 Entity Sets

An entity set is a sei of entities of the same type that share the same properties or attributes. For
example consider the entity sets i.e., customer and loan shown in figure 2.7.

The set of all persons who are customers at a given bank is defined as an entity set customer.
Similarly the entity loan represents the set of all loans awarded by a particular bank.

The individual entities that constitute a set are said to be the extension of the entity set. Thus all the
individual bank customers are the extensions of the entity set customer.

Customer Loan
321-123123 | Jones - | Main Harrison L-17 | 1000
019-28-3746 | Smith North Rye L-23 | 2000
677-89-9011 | Hayes Main Harrison L-15 | 1500
555-55-5555 | Jackson | Dupont | Woodside L-14 | 1500
244-66-8800 | Curry North Rye L-19 | 500
963-96-3963 | Williams | Nassai | Princeton L-11 | 900
335-57-7991 | Adams | Spring | Pittsfiels L-16 | 1300

- Figure 2.7: Entity set

14.2 Entity Attributes

p Definition of attributes

An entity is represented by a set of attributes that is descriptive properties possessed by all members

of an entity set.

Example: Consider the following two entities that is customer and loan, then the attributes for each

respectively are:

Customer = (customer-id, customer-name, customer-street, customer-city)

loan = (loan-number, amount)

» Attribute types

1.

Also it can be observed in the figure that the composite attribute address consisting of street
can further be structured into street-number, street-name and apartment-number, it is known as

component attribute.

Simple and composite attributes: Composite attributes are
those which can be divided into sub parts. For example, as
shown in figure 2.8 the attribute name can be structured into
attributes consisting of first-name, middle-name and last-
name.

An attribute, as used in the E-R model, can be characterized by the
following attribute types:

Address
Composite '
attributes
First-name Middie-initial Last-name Street City State Postal-code

Component
attributes

Street-number Street-name Apartment-number
Figure 2.8: Composite attributes customer_name and customer_address

2. Single-valued and multi-valued attributes: There are instances that where an attribute has
set of values for a specific entity. For example phone number is a multivalued attribute as
there can be multiple phone numbers associated to an individual.

3. Derived attributes: The value for this type of attribute can be derived from the values of
other related attributes or entities. For example to compute age, given date of birth.

14.3 Relationship Sets

A relationship is an association among several entities.

Example:
Hayes depositor A-102

customer entity relationship set account entity

A relationship set is a mathematical relation among n 2 2 entities, each taken from entity sets
{(el,e2,...en)lel € El,e2€ E2,...,enec Eﬁ} where (el, €2, ..., en) is a relationship
Example: (See figure 2.9)

(Hayes, A-102) € depositor

An attribute can also be property of a relationship set. For instance, the depositor relationship set
between entity sets customer and account may have the attribute access-date.

Relationship sets that involve two entity sets are binary (or degree two).

Generally, most relationship sets in a database system are binary. Relationship sets may involve
more than two entity sets.

For example, suppose employees of a bank may have jobs (responsibilities) at multiple branches,
with different jobs at different branches.

Then there is a ternary relationship set between entities sets employee, job and branch. Relationships
between more than two entity sets are rare. Most relationships are binary.

Depositor(access-date)
Account(account-number)
Customer({customer-name) 24 May 1996
3 June 1996 A-101
21 June 1996 A-215
10 June 1996 A-102
17 June 1996 A-305
-—_Tumer
28 May 1996 A-201
-_Jones
28 May 1996 -—-A-222
24 June 1996 A-217
23 May 1996

Figure 2.9: Example of relationship set

14.4 Mapping Cardinalities

Mapping cardinalities, or cardinality ratios, express the number of entities to which another entity

can be associated via a relationship set.
ber A B

: 1 3
< a
& 5

)
’@

& &

{a) One-to-one mapping (b) One-to-many mapping

Figure 2.10: (a) One-to-One Mapping (b) One-to- Many Mapping

i.

ii.

jii.

iv.

(a) Many-to-one mapping - (b) Many-to-many mapping

Figure 2.11: (a) Many-to-One Mapping (b) Many-to-Many Mapping

One - to ~ One: An entity in A is associated with at most one entity in B, and an entity in B is
associated with at most one entity in A.

One - to — Many: An entity in A is associated with any number of entities in B. An entity in
B is however, can be associated with at most one entity in A.

Many -~ to — One: An entity in A is associated with at most one entity in B. An entity in B can
however be associated with any number of entities in A

Many - to — Many: An entity in A is associated with any number of entities in B, and an

entity in B is associated with any number of entities in A.

15. Entity Relationship Diagram (ERD)

An E-R diagram can express the overall structure of a database graphically. E-R diagrams can be
represented with the following major components:

Rectangles represent entity sets.
Diamonds represent relationship sets.
Lines link attributes to entity sets and entity sets to relationship sets.

Ellipses represent attributes

— Double ellipses represent multivalued attributes.

~ Dashed ellipses denote deriyed attributes.
o Underline indicates primary key attributes.
° Double lines represents total participation of an entity in relatiohsip set.
] Double rectangles represent weak entity set.

Consider the entity relationship diagram in figure 2.12, which consists of two entity sets, customer

and loan, related through a binary relationship set borrower.

Customer-name) (Customer-sireet
Customer-id

Customer Borrower ‘ Loan

Figure 2.12: E-R diagram corresponding to customers and loans

Street-name
Street-number Apartment-number
@ Street City

Middle-initial

Name Address State

T | Customer Zip-code
Date-of-birth

Figure 2.13: E-R diagram with composite, multi-valued and derived attributes

Figure 2.13 illustrates a multivalued attribute phone_number, depicted by double ellipse, and the
derived attribute age, depicted by a dashed ellipse.

— A
e g-m},

N

If a relationship set has also some attributes associated with it, then we link these attributes to that
relationship set.

For example, in figure 2.14 we have the access_date descriptive attribute attached to the relationship
set depositor to specify the most recent date on which the customer accessed the account.

Account-number

Balance

Account

Customer Depositor

Figure 2.14: E-R diagram with an attribute attached to a relationship set

We express cardinality constraints by drawing either a directed line (—), signifying “one,” or an
undirected line (—), signifying “many,” between the relationship set and the entity set.

For example, one-to-one relationship (See figure 2.15):

. A customer is associated with at most one loan via the relationship borrower.
e Aloanis associated with at most one customer via borrower.

Loan-number

Customer-name) (Customer-street

Customer Borrower Loan

Figure 2.15: One-to-one relationship

In one-to-many relationship, a loan is associated with atmost one customer via borrower, a customer
is associated with several (including O) loans via borrower. See figure 2.16.

Customer-name

Customer-street Loan-number

Customer : Borrower Loan

Figure 2.16: One-to-many relationship

Customer-id

In many-to-one relationship, a loan is associated with several (including 0) customers via borrower,
a customer is associated with at most one loan via borrower. See figure 2.17.

Customer-street Loan-number

Customer @—» Loan

Figure 2.17: Many-to-one relationship

Customer-name

Customer-id

In many - to — many, a customer is associated with several (possibly 0) loans via borrower and a
loan is associated with several (possibly 0) customers via borrower. See figure 2.18.

Customer-street

Customer Borrower Loan

Figure 2.18: Many-to-Many relationship

Customer-name

Participation of an entity set in a relationship set can be partial or total.

Total participation (indicated by double line): Every entity in the entity set participates in at least
one relationship in the relationship set.

For example, participation of loan in borrower is total and every loan must have a customer
associated to it via borrower.

Partial participation: Some entities may not participate in any relationship in the relationship set.
For example, participation of customer in borrower is partial.

E-R diagrams also provide a way to indicate more complex constraints on the number of times each
entity participates in relationships in a relationship set. An edge between an entity set and a binary
relationship set can have an associated minimum and maximum cardinality, shown in the form ...k
where / is the minimum and 4 the maximum cardinality.

A minimum value of 1 indicates total participation of the entity set in the relationship set. A
maximum value of 1 indicates that the entity participates in atmost one relationship, while a
maximum value * indicates no limit. Note that a label 1..* on an edge is equivalent to a double line.

For example consider figure 2.20. The edge between loan and borrower has a cardinality constraint
1...1, meaning the minimum and the maximum cardinality are both 1. That is, each loan must have
exactly one associated customer. The limit 0...* on the edge from customer to borrower indicates
that a customer can have zero or more loans.

Thus, the relationship borrower is one-to-many from customer to loan, and further the participation

of loan in borrower is total.
Customer-street) -

Loan

Customer Borrower

Figure 2.19: Participation of an entity set in relationship set

Customer-name) (Customer-sireet Loan-number

Customer = Borrower

Figure 2.20: Cardinality limits on a relationship set

Entity sets of a relationship need not be distinct. The labels “manager” and “worker” in figure 2.21
are called roles; they specify how employee entities interact via the works-for relationship set.

Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles. Role
labels are optional, and are used to clarify semantics of the relationship.

Employee-name
Emplovee-id Telephone-number

Manager
Employee - | < Works-for
Worker

Figure 2.21: Role indicators

16. Extended Features of ERD

Apart from the various features of ER diagram discussed above there
can be certain extensions to the basic E-R diagram. The extended
features are specialization, generalization, attribute inheritance and
aggregation.

16.1 Specialization and Generalization

» _ Specialization
sobe, :
* An entity set may include subgroupings of entities that are distinct in

some way from the other entities in the set.

For instance, a subset of entities within an entity set may have
attributes that are not shared by all the entities in the entity set. The
ER model provides the means for representing these distinctive
entity groupings.

As an example consider an entity set person, with attributes person_id, name, street and city. A
person may be further classified as one of the following:

L Customer
] -Employee

Each of this person type is described by a set of attributes that include all the attributes of entity set
person plus possible additional attributes. For example, customer entities may be described further
by an attribute credit_rating, whereas entities may be described further by the attribute salary. The
process of designing subgroupings within an entity set is called specialization.

In terms of an E-R diagram, specialization is depicted by a triangle component labeled ISA, as
shown in figure 2.22. The labeled ISA stands for “is a” and represents, for example, that a customer
“is a” person. The ISA relationship may also be referred to as a super class — sub class relationship.
Higher and lower entity sets are depicted as regular entity sets - that is, as rectangles containing the
name of the entity set.

» Generalization]

The refinement from an initial entity set into successive levels of
entity subgroupings represent a top down design process in which
distinctions are made explicit. The design process may also proceed
in a bottom up manner, in which multiple entity sets are synthesized
into a higher level entity set on the basis of common features.

The database designer may have first identified a customer entity set with the attributes customer_id,
customer_name, customer_city and credit_rating and employee entity set with the attributes
employee_id, employee_name, employee_city and employee_salary.

There are similarities between the customer entity set and the employee entity set in the sense that
they have several attributes that are conceptually the same across the two entity sets: namely, the
identifier, name, street, and city attributes. This commonality can be expressed by generalization,
which is a containment relationship that exists between the higher level entity set and one or more
lower level entity set. In our example person is the higher level entity set and customer and employee
are lower level entity sets.

Apr. 2012 4M_

Write short note on
' gqa_rahzatian

16.2 Attribute Inheritance

A crucial property of the higher and lower level entities created by specialization and generalization
is attribute inheritance. The attributes of the higher entity sets are said to be inherited by the lower
level entity sets.

Figure 2.22 depicts the hierarchy of entity sets.

In the figure, employee is a lower level entity set of person and a higher level entity set of the officer,
teller and secretary entity sets.

In a hierarchy, a given entity set may be involved as a lower level entity set in only one ISA
relationship; that is entity sets in this diagram have only single inheritance. If an entity set is a lower
level entity set is more than one ISA relationship then the entity set has multiple inheritance, and the

resulting structure is said to be lattice.

Person

Credit-rating

Employee Customer

ISA

| officer | | Teller | [Secretary]

Station-number Hours-worked

Figure 2.22: Specialization and generalization

16.3 Aggregation

Aggregation is an abstraction through which relationships are treated as higher level entities. Thus
for example, we regard the relationship set works_on as a higher level entity set. Such entity set is
treated in the same manner as in any other entity set. Then we create a binary relationship manages
between works_on and manager to represent who manages what task. Figure 2.23 shows a notation
for aggregation commonly used to represent this situation.

Job

Empioyee | Branch

Manages

Manager

Figure 2.23: Aggregation

17. The Object-Oriented Model

1.

’

The object-oriented model is based on a collection of objects, like the E-R model.

An object contains values stored in instance variables within the object.
Unlike the record-oriented models, these values are themselves objects.
Thus objects contain objects to an arbitrarily deep level of nesting,

An object also-contains bodies of code that operate on the the object.
These bodies of code are called methods.

Objects that contain the same types of values and the same methods are grouped into
classes.

A class may be viewed as a type definition for objects.
Analogy: the programming language concept of an abstract data type.

The only way in which one object can access the data of another object is by invoking the
method of that other object.

e This is called sending a message to the object.

e Internal parts of the object, the instance variables and method code, are not visible
externally.

e Result is two levels of data abstraction.
For example, consider an object representing a bank account.

e The object contains instance variables number and balance.
¢ The object contains a method pay-interest which adds interest to the balance.

¢ Under most data models, changing the interest rate entails changing code in application
programs.

¢ In the object-oriented model, this only entails a change within the pay-interest method.

Unlike entities in the E-R model, each object has its own unique identity, independent of the
values it contains:

¢ Two objects containing the same values are distinct.

e Distinction is created and maintained in physical level by assigning distinct object
identifiers.

18. Case Study for E-R Diagrams

Consider the following banking enterprise with the following major banking characteristics:

1.

2.

The bank is organized into branches. Each branch is located into a particular city and is
identified by a particular name. The bank monitors the asset of each branch.

Bank customers are identified by their customer identification number. Customer personal
detail is stored in the bank. Customers may have account and take loans.

Bank stores the personal details of the employees and maintains the track of employees start
date and length of service. '

The bank offers two types of account — saving and checking account. Accounts can be held by
more than one customer and customer can have more than one account in the bank. Each
account has unique account number. The bank maintains all related account details.

A loan originates at a particular branch and can hold by one or more customers. A loan is
identified by a unique loan number. For each loan, the bank keeps track of the loan amount
and the loan payments.

g;’i-sg,)
>

Figure 2.24 shows the E-R diagram for the banking example.

G T D G

Payment-date
Customer-street ! oan-number

—

Cust-bank
ust-banker @ Account-number

Manager Depositor Account
Employeel” <

Worker

Employee-name

Telephone-number
Employment-length Start-date Interest-rate Overdraft-amount

Figure 2.24: E-R diagram for the banking enterprise

ISA

[Savings—aocount[[Checking—account[

Solved Case Studies

1. A computer institute conducts lots of courses. For each course there are several batches
throughout the day. Every batch has minimum and maximum capacity. The number of
students admitted to a batch cannot exceed the maximum capacity and a batch cannot be
started if the number of students admitted to that batch is less than the minimum
capacity. Also for every batch there is a starting date and a student cannot be admitted

to the batch after fifteen days of starting of the batch.

For each course certain basic qualification is required for a student to get admission to
the course. A student can select convenient batch from the batches available.
Through_out the course time, the institute conducts four tests before the final
examination. The final result of the student depends on the marks in these four tests and
the marks in the final examination. ‘

There are faculty members who teach these different courses. The faculty members have
specialization in certain subjects and they can teach only those courses in which they
j have specialization. At a time he/she cannot teach more than three batches.

Draw an entity-relationship diagram.

Solution

Add
=

@RD—{ Author | | Publisher |—CGRD)
e Enal)

@ Published-by (Name) (Phone)

@
~

Citle)
e\ @ e
@ Shopping-basket

o> (G
T CEECED

2. Draw E-R diagram with key attributes for the Library: University library have many
books. Books are written by different authors. Books are classified into different
categories. Library purchases books from specific booksellers of different publishers.
Members of Library are either staff-member or students.

Solution

Bookselter

4
l Member

3. A company has several employees. At least one employee is assigned to a project, but an
- employee may be on vacation and not assigned to any projects. A database should
provide following details to the user.

1
Category

i. Identify all entities

ii. Identify all relations

iii. E-R Diagram
Solution

i. Identify all entities

Employee
Project

ii. Identify all relations

Each project must have one or more employees.

Each employee can have 0 or more projects.

So there is many to many relationship between project and employee.
Employee(employeeno,empname,ebdate,dateofvacation, no of days)
Project(projectno,projname)
Employeeproject(employeeno,projectno)

iii.

L

ii.

iii.

Solution

E-R Diagram

A company has several departments. Each department has
a supervisor and at least one employee. Employees must
be assigned to at least one, but possibly more departments.
i. Identify all entities

ii. Identify all relations

ili. Draw E-R diagram

Identify all entities : Entities are as follows:

a. Department(dno,dname,noofemployee)

b. Employee(eno,ename,desg)

Identify all relations

Department and Employee are related with many to many relationship.
So to maintain this relationship we have to create third table

Department_employee(dno,empno)

E-R diagram

Department Q

noofemployee

Iy

Supervisor

A car insurance company has a set of customers, each of whom owns one or more cars.
Each car has associated with it zero to any number of record accidents.

i Identify all entities ii. Identify all relations
iii. Draw E-R Diagram

Solution

Entities are:

Customer (cno, cname, address, city, phone-no, licencenoy;
Car (carno, model, insuredate, cno)

Accident (ano, carno, adate, location, city)

Relationship between entities are as follows

i.

One customer has Many cars (One-to-many)

ii. One car has Many accidents (One-to-many) whe,
Q'o Gn

6. An insurance agent sells insurance policies to clients. < 1 2
Policies can be of different types such as vehicle insurance, T °’»% vy
Life insurance, Accident insurance, etc. The agent collects [Apr. 2010 - 8M 'j‘“f‘ J
monthly premiums on the policies in the form of cheques e g S
of local banks. ‘
Database should provide the following details to user.
i Identify all entities ii. Identify all relations iii. E-R diagram

Solution

Identify all entities
Entities are as follows:

a. Insurance Manager(mng_no,mname,madd,mphone)

b. Policies(pol_no,pol_desc,pol_type,amount)

¢. Clients(client_no,client_name,client_addr,date_of_birth,client_oh);

d. Premiuns(premium_no, mode_of_premium,amount);

Identify all relations

a. Client and policy are related with many to many relationships having attribute as
maturity year.

b. Insurance manager and policies have many to many relationships.

c. Insurance manager and clients are related with many to many relationships.

E-R diagram

Insurance manager

poino
Mode_of premium Pohcy desc Vehicle insurance]
policy Life insurance |

premium Policy_type

Accident insurance]

Date_of_birth

Client_addr

Summary

A DBMS is a complex software system consisting of a number of components. The DBMS
provides users with a method of abstracting their data requirements and removes the drudgery
of specifying the details of the storage and maintenance of data. DBMS propped up with the
need to have more sophisticated method for storing large amount of data after encountering
the various limitations of the pervious file — processing system.

The various advantages of DBMS are centralized control, data independence, elimination of
data redundancy, security enforcement etc. However there are also some disadvantages of
DBMS that is problems associated with centralization, cost of software/hardware and migration,
complexity of backup and recovery etc.

A number of data representation models have been developed over the years. As in case of
programming languages, one concludes that there is no one “best” choice for all applications.
These models differ in their method of representing the association between entities and
attributes.

The entity — relationship data model, which is popular for high — level database design,
provides a means of representing relationships between entities. An entity is an object that
exists in the real world and is distinguishable from other objects. A relationship is an
association among several entities.

. Patabase Management Sy

10ciz012 4

. [Apr2012- 4
[Apr.20t2- 41

 [Apr2011-4M

. loszotean

Oct.2012- 41
[0ct.2012- 4m

- r212“ 41

[Oct.2011- 40

[Apr2011= 441

[ADF.2011— 4\

[Apr.2011- 4M

 [0ct2010- M
 [0ct2010- 4M
. [Abr2010-aM

lhor2oto-amm
1Apr.2010- 40 10*'4

Chapier 5
RELATIONAL

MODEL

1. Introduction

The relational model for database is one of the most important models accepted after hierarchical
and network model for its known simplicity. A relational database consists of collection of tables,
each of which is assigned a unique name. A row in a table represents relationship among a set of
values. Since a table is a collection of such relationships, there is a close correspondence between the
concept of table and mathematical concept of relation, from which the relational data model takes its
name.

2. Terms

This section describes the structural part of the relational model. This is achieved through a number
of constructs which are illustrated in Figure 3.1 and described below.

Attribute

Domain Tuple
. Name: . .
MatricNo: Registered: Counsellor:
MatricNos Person Names Yegrs<. i Staff Nos¢—]
S01 Bloggs 1993 4523
3502 Smith 1998 3412
S05 Jones Null 4523
sSo7 Stewart 1996 4538
509 MacDonald 1995 4523

Relation: A relation comprises a set of tuples. Figure 3.1 is a tabular representation of the Student
relation containing five tuples.

Tuple: A tuple is a sequence of attributes i.e. a row in the relation table. There are five tuples shown
in the Student relation in figure 3.1 the one highlighted concerns Student identified by the

MatricNo 'sQ7'.

Attribute: An aitribute is a named column in the relation table. The Student relation in figure 3.1
contains four attributes - the MatricNo attribute is highlighted, other attributes are Name, Registered

and Counsellor.

Domain: The domain construct is important as it identifies the type of an attribute. More formally
the domain is a named set of values which have a common meaning.The domain of an attribute

Figure 3.1

defines the set of values from which an attribute can draw

2.1 Properties of Relations

Relations have three important properties. Each relation has a name, a cardinality and a degree.
These properties help us to further define and describe relations. The three properties introduced

above are defined as follows:

1. Name: The first property is that a relation has a name which identifies it, for example the
Student relation illustrated in figure 3.1.

2. Cardinality: The second property of a relation it its cardinality. This refers to the number of
tuples in the relation. If we again take figure 3.1 as our example, then the cardinality of the
Student relation is 5. '

3. Degree: The third and final property of a relation is its degree. The degree of a relation refers
to the number of attributes in each tuple. Again, with reference to figure 3.1, the degree of the
Student relation is 4, the attributes being MatricNo, Name, Registered and Counsello.

Figure 3.2 shows the deposit and customer tables for our banking example.

bname account# | ename | balance
Camp 101 Anil 500
Bhagyanagar | 213 Sunil 700
Vihar Kunj 102 Hemant | 400
Vihar Kunj 301 Kavita | 1300

ename | street | ecity

Anil North | Pune

Sunil East Aurangabad
Hemant | West | Mumbai
Kavita | South | Mumbai
Suman | central | Nagpur

Figure 3.2: The deposit and customer relations

. It has four attributes.

] For each attribute there is a permitted set of values, called the domain of that attribute.

. For example the domain of bname is the set of all branch names.

1. Let D, denote the domain of bname, and D,, D; and D, the remaining attributes' domains
respectively.

Then, any row of deposit consists of a four-tuple (v, vy, V3, V4) Where
V; € Dl,'l)ze Dg,'\):;e D;, v, € D4

In general, deposit contains a subset of the set of all possible rows.

That is, deposit is a subset of

D;xDyxDsx Dy, orabbreviated to x?= . Di

In general, a table of n columns must be a subset of

n

X;~; Di (all possible rows)

2. Mathematicians define a relation to be a subset of a Cartesian product of a list of domains.
You can see the correspondence with our tables.

We will use the terms relation and tuple in place of table and row from now on.

3. Some more formalities:

® Let the tuple variable t refer to a tuple of the relation r.

* Wesayt € rto denote that the tuple t is in relation .

¢ Then t [bname] = t[1] = the value of t on the bname attribute.

¢ So tlbname] = t[1] = "Downtown",

¢ and t[cname] = t[3] = "Johnson".
Mathematicians define a relation to be a subset of a Cartesian product, of a list of domains. This
definition corresponds almost exactly with our definition of table. The only difference is that we
have assigned names to attributes, whereas mathematicians rely on numeric “names”, using the
integer 1 to denote the attribute whose domain appears first in the list of domains, 2 for the attribute
whose domain appears second, and so on. Because tables are essentially relations, we shall use the

mathematical terms relation and tuple in other words, a tuple variable is a variable whose domain is
the set of all tuples.

» Database Scheme

When we talk about a database, we must differentiate between the database schema, which is the
logical design of the database and the database instance, which is a snapshot of the data in the
database at a given instant in time.

The concept of a relation corresponds to the programming language notion of a variable. The
concept of a relation schema corresponds to the programming language.

It is convenient to give a name to a relation schema just as we give names to type definitions in
programming languages. We adopt the convention of using lower case names for relations, and
names beginning with an uppercase letter for relation schemes.

For example, the relation scheme for the deposit relation:
. Deposit-scheme = (bname, account#, cname, balance)

We may state that deposit is a relation on scheme Deposit-scheme by writing deposit(Deposit-
scheme).

If we wish to specify domains, we can write:

(bname: string, account#: integer, cname: string, balance: integer).

Rejational Modal

Note that customers are identified by name. In the real world, this would not be allowed, as two or
more customers might share the same name.

Figure 3.3 shows the E-R diagram for a banking enterprise.

Account
: @ number

Brm

..'-—4/ ———,
>,
@ Assets

Branch

_name

Customer

Figure 3.3: E-R diagram for the banking enterprise

The relation schemes for the banking example used throughout the text are:

Branch-scheme = (bname, assets, bcity)
Customer-scheme = (cname, street, ccity)
Deposit-scheme = (bname, account#, cname, balance)

Borrow-scheme = (bname, loan#, cname, amount)

Note: Some attributes appear in several relation schemes (e.g., bname, cname). This is legal, and
provides a way of relating tuples of distinct relations.

1.

Why not put all attributes in one relation?

Suppose we use one large relation instead of customer and deposit:

* Account-scheme = (bname, account#, cname, balance, street, ccity)

¢ If a customer has several accounts, we must duplicate her or his address for each account.

* If a customer has an account but no current address, we cannot build a tuple, as we have no
values for the address.

s We would have to use null values for these fields.

ational Model

® Null values cause difficulties in the database.
* By using two separate relations, we can do this without using null values.

Queries made against the relational database, and the derived relvars in the database are
expressed in a relational calculus or a relational algebra. In his original relational algebra,
Dr. Codd introduced eight relational operators in two groups of four operators each. The
first four operators were based on the traditional mathematical set operations:

* The union operator combines the tuples of two relations and removes all duplicate tuples
from the result. The relational union operator is equivalent to the SQL UNION operator.

* The intersection operator produces the set of tuples that two relations share in common.
Intersection is implemented in SQL in the form of the INTERSECT operator.

® The difference operator acts on two relations and pfoduces the set of tuples from the first
relation that do not exist in the second relation. Difference is implemented in SQL in the
form of the EXCEPT or MINUS operator.

The cartesian product of two relations is a join that is not restricted by any criteria, resulting in every
tuple of the first relation being matched with every tuple of the second relation. The cartesian
product is implemented in SQL as the CROSS JOIN join operator.

The remaining operators proposed by Dr. Codd involve special operations specific to relational.

The selection, or restriction, operation retrieves tuples from a relation, limiting the results to only
those that meet a specific criteria, i.e., a subset of terms of set theory. The SQL equivalent of
selection is the SELECT query statement with a WHERE clause.

The projection operation is essentially a selection operation in which duplicate tuples are removed
from the result. The SQL GROUP BY clause, or the DISTINCT keyword implemented by some
SQL dialects, can be used to remove duplicates from a result set.

The join operation defined for relational databases is often referred to as a natural Jjoin. In this type of
join, two relations are connected by their common attributes. SQL's approximation of a natural join
is the INNER JOIN join operator. '

The relational division operation is slightly more complex operation, which involves essentially
using the tuples of one relation (the dividend) to partition a second relation (the divisor). The
relational division operator is effectively the opposite of the cartesian product operator (hence the
name). '

Other operators have been introduced or proposed since Dr. Codd's introduction of the original eight
including relational comparison operators and extensions that offer support for nesting and
hierarchical data, among others.

3. Keys

In relational database design, a unique key or primary key is a
candidate key to uniquely identify each row in a table. A unique key
or primary key comprises a single column or set of columns. No two
distinct rows in a table can have the same value (or combination of
values) in those columns. Depending on its design, a table may have
arbitrarily many unique keys but at most one primary key.

A unique key must uniquely identify all possible rows that exist in a
table and not only the currently existing rows. Examples of unique
keys are Social Security numbers (associated with a specific person)
or ISBNs (associated with a specific book). Telephone books and
dictionaries cannot use names or words or Dewey Decimal system

numbers as candidate keys because they do not uniquely identify telephone A primary key is a
special case of unique keys. The major difference is that for unique keys the implicit NOT NULL
constraint is not automatically enforced, while for primary keys it is. Thus, the values in unique key
columns may or may not be NULL. Another difference is that primary keys must be defined using
another syntax. numbers or words.

The relational model, as expressed through relational calculus and relational algebra, does not
distinguish between primary keys and other kinds of keys. Primary keys were added to the SQL
standard mainly as a convenience to the application programmer.

Unique keys as well as primary keys can be referenced by foreign keys.

3.1 Primary Keys

Primary keys are defined in the ANSI SQL Standard, through the PRIMARY KEY constraint. The
syntax to add such a constraint to an existing table is defined in SQL: 2003 like this:

ALTER TABLE <table identifier>
ADD [CONSTRAINT <constraint identifier>]
PRIMARY KEY (<column expression>)

{, <column expression>}...)

The primary key can also be specified directly during table creation. In the SQL Standard, primary
keys may consist of one or multiple columns. Each column participating in the primary key is
implicitly defined as NOT NULL.

Note that some DBMS require that primary key columns are explicitly marked as being NOT NULL.

CREATE TABLE table_name

(
id_col INT,
col2 CHARACTER VARYING(20),

CONSTRAINT tab_pk PRIMARY KEY(id_col),
)

If the primary key consists only of a single column, the column can be marked as such using the
following syntax:

CREATE TABLE table_name

(
id_col INT PRIMARY KEY,

col2 CHARACTER VARYING({20),

3.2 Unique Keys

The definition of unique keys is syntactically very similar to primary keys.

ALTER TABLE <table identifier>
ADD [CONSTRAINT <constraint identifier>]
UNIQUE (<column expression> {, <column expression>}...)

A column or a set of columns can be declared to be unique key. This constraint ensures that a value
entered in the column must not be repeated. This constraint cannot be applied to the columns having
LONG or LONG RAW type

Likewise, unique keys can be defined as part of the Create table SQL statement.

CREATE TABLE table name

(id_col INT,
col?2 CHARACTER VARYING(20),
key_col SMALLINT,

CONSTRAINT key_unique UNIQUE (key_ccl),
)
CREATE TABLE table_name
(id_col INT PRIMARY KEY,

col2 CHARACTER VARYING(20),

key_col SMALLINT UNIQUE,

3.3 Surrogate Keys

In some design situations the natural key that uniquely identifies a tuple in a relation is difficult to
use for software development. For example, it may involve multiple columns or large text fields. A
surrogate key can be used as the primary key. In other situations there may be more than one
candidate key for a relation, and no candidate key is obviously preferred. A surrogate key may be
used as the primary key to avoid giving one candidate key artificial primary over the others.

Since primary keys exist primarily as a convenience to the programmer, surrogate primary keys are
often used—in many cases exclusively—in database application design.

Due to the popularity of surrogate primary keys, many developers and in some cases even
theoreticians have come to regard surrogate primary keys as an inalienable part of the relational data
model. This is largely due to a migration of principles from the Object-Oriented Programming model
to the relational model, creating the hybrid object-relational model. In the ORM, these additional
restrictions are placed on primary keys:

. Primary keys should be immutable, that is, not change until the record is destroyed.

. Primary keys should be anonymous integer or numeric identifiers.

However, neither of these restrictions are part of the relational model or any SQL standard. Due
diligence should be applied when deciding on the immutability of primary key values during
database and application design. Some database systems even imply that values in primary key
columns cannot be changed using the UPDATE SQL statement.

Seher

3
i |
3

& gyot

Sann ¥

3.4 Foreign Key

A foreign key is a field (or fields) that points to the primary key of
another table. The purpose of the foreign key is to ensure referential
integrity of the data. In other words, those only values that are
supposed to appear in the database are permitted.

For example, say we have two tables, a CUSTOMER table that includes all customer data, and an
ORDERS table that includes all customer orders. The constraint here is that all orders must be
associated with a customer that is already in the CUSTOMER table.

In this case, we will place a foreign key on the ORDERS table and have it relate to the primary key
of the CUSTOMER table. This way, we can ensure that all orders in the ORDERS table are related
to a customer in the CUSTOMER table. In other words, the ORDERS table cannot contain
information on a customer that is not in the CUSTOMER table.

The structure of these two tables will be as follows:

Table CUSTOMER

| column_name | characteristic
SID Primary Key
Last_Name ‘
First_Name

Table ORDERS

Column_name | characteristic
Order_ID Primary Key
Order_Date
Customer_SID | Foreign Key
Amount

In the above example, the Customer_SID column in the ORDERS table is a foreign key pointing to
the SID column in the CUSTOMER table.

3.5 Super Key

A superkey is defined in the relational model of database
organization as a set of attributes of a relation variable (relvar) for
which it holds that in all relations assigned to that variable there are
no two distinct tuples (rows) that have the same values for the
attributes in this set.

Equivalently a sﬁperkey can also be defined as a set of attributes of a
relvar upon which all attributes of the relvar are functionally
dependent.

Note that if attribute set K is a superkey of relvar R, then at all times it is the case that the projection
of R over K has the same cardinality as R itself.

Informally, a superkey is a set of columns within a table whose values can be used to uniquely
identify a row. A candidate key is a minimal set of columns necessary to identify a row, this is also
called a minimal superkey. For example, given an employee table, consisting of the columns
employeelD, name, job, and departmentID, we could use the employeelD in combination with any
or all other columns of this table to uniquely identify a row in the table. Examples of superkeys in

this table would be {employeeID, Name}, {employeeID, Name, job}, and {employeelD, Name, job,
departmentID}.

In a real database we don't need values for all of those columns to identify a row. We only need, as
per our example, the set {employeeID}. This is a minimal superkey — that is, a minimal set of
columns that can be used to identify a single row. So, employeelD is a candidate key.

Example
English Monarchs
Monarch Name | Monarch Number | Royal House
Edward il Plantagenet
Edward Il Plantagenet
Richard i Plantagenet
Henry v Lancaster

In this example, the possible superkeys are:

U {Monarch Name, Monarch Number}

* {Monarch Name, Monarch Number, Royal Hduse}

In the relational model, a candidate key of a relvar (relation variable) is a set of attributes of that
relvar such that

1. at all times it holds in the relation assigned to that variable that there are no two distinct tuples
with the same values for these attributes and

2. there is not a proper subset of this set of attributes for which (1) holds.

Since a superkey is defined as a set of attributes for which (1) holds, we can also define a candidate
key as a minimal superkey, i.e., a superkey of which no proper subset is also a superkey.

3.6 Candidate Key

The importance of candidate keys is that they tell us how we can identify individual tuples in a
relation. As such they are one of the most important types of database constraint that should be
specified when designing a database schema. Since a relation is a set (no duplicate elements), it
holds that every relation will have at least one candidate key (because the entire heading is always a
superkey).

Since in some RDBMSs tables may also represent multisets (which strictly means these DBMSs are
not relational), it is an important design rule to specify explicitly at least one candidate key for each

relation. For practical reasons, RDBMSs usually require that for each relation one of its candidate
key is declared as the primary key, which means that it is considered as the preferred way to identify
individual tuples. Foreign keys, for example, are usually required to reference such a primary key
and not any of the other candidate keys. '

The definition of candidate keys can be illustrated with the following (abstract) example. Consider a
relation variable (relvar) R with attributes (A, B, C, D) that has only the following two legal values
rl and r2: '

ri re

A B |C |D A |B |C|D
al [b1 {ct|di al | b1 |cl|di
at | b2 |c2|dl at | b2 | c2 | di
a2 | bt |c2|di at | bl |c2|d2

Here r2 differs from rl only in the A and D values of the last tuple.

For rl the following sets have the uniqueness property, i.e., there are no two tuples in the instance
with the same values for the attributes in the set:

{A.B}, {AC}, {B,C}, {AB,C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}
For r2 the uniqueness property holds for the following sets;
{B.D}, {C.D}, {B,C}, {A,B.C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}

Since superkeys of a relvar are those sets of attributes that have the uniqueness property for all legal
values of that relvar and because we assume that r1 and r2 are all the legal values that R can take, we
can determine the set of superkeys of R by taking the intersection of the two lists:

{B,C}, {A.B,C}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}

Finally we need to select those sets for which there is no proper subset in the list, which are in this
case:

{B.C}. {A,B,D}, {A,C,D}
These are indeed the candidate keys of relvar R.

We have to consider all the relations that might be assigned to a relvar to determine whether a certain
set of attributes is a candidate key. For example, if we had considered only r1 then we would have
concluded that {A.B} is a candidate key, which is incorrect. However, we might be able to conclude
from such a relation that a certain set is not a candidate key, because that set does not have the
uniqueness property (example {A,D} for r1). Note that the existence of a proper subset of a set that
has the uniqueness property cannot in general be used as evidence that the superset is not a candidate
key. In particular, note that in the case of an empty relation, every subset of the heading has the
uniqueness property, including the empty set.

» Determining Candidate Keys

The previous example only illustrates the definition of candidate key and not how these are in
practice determined. Since most relations have a large number or even infinitely many instances it
would be impossible to determine all the sets of attributes with the uniqueness property for each
instance. Instead it is easier to consider the sets of real-world entities that are represented by the
relation and determine which attributes of the entities uniquely identify them. For example, a relation
Employee(Name, Address, Dept) probably represents employees and these are likely to be uniquely
identified by a combination of Name and Address which is therefore a superkey, and unless the same
holds for only Name or only Address, then this combination is also a candidate key.

In order to determine correctly the candidate keys it is important to determine all superkeys, which is
especially difficult if the relation represents a set of relationships rather than a set of entities.
Therefore it is often useful to attempt to find any "forgotten” superkeys by also determining the
functional dependencies. Consider for example the relation Marriage(Husband, Wife, Date) for
which it will trivially hold that {Husband, Wife, Date} is a superkey. If we assume that a certain
person can only marry once on a given date then this implies the functional dependencies{ Husband,
Date}—Wife and {Wife, Date}—Husband. From this then we can derive more superkeys by
applying the following rule:

if S is a superkey and X—'Y a functional dependency
then (S-Y)+X is also a superkey

where '-' is the set difference and '+' the set union. In this case this leads to the derivation of the
superkeys {Husband, Date} and {Wife, Date}.

There are many types of integrity constraints applicable at various
situations. They are as follows:

_Types of integrity
i. Domain Constraint: For a given application an attribute is constraints
allowed to take a value from a set of permissible values. This i. Domain constraint
set of allowable values for the attribute is called the domain of ~ #. Referential constraint
the attribute. iil. Entity integrity
~_constraint

Example: Employee ages: Possible ages of employees of a wKey constraint
company must be a value between 18 and 60 years. Domain o ,
for the attribute age is all values between 18 to 60 years.

ii. Referential Integrity Constraint: The referential integrity constraint states that a tuple in one
relation that refers to another relation must refer to an existing tuple in that relation.

Example: Employee, Department tables with following attribute.

Employee (Empno, name, address, deptno)
. Department (deptno, deptname)

Deptno is foreign key in Employee table. So while entering tuple in employee relation,
department value is compared to department tuples. If existing, insertion in employee is

allowed; if the value of dept no is not present in the department relation then system will not
allow user to store the record.

iii. Entity Integrity Constraint: This is a specialization to the domain constraints for null values.
It states that the primary key attribute(s) cannot have a null value in any tuple. As we know,
the primary key value is used to identify individual tuples in a relation. If the null values are
allowed it means that these tuples cannot be identified or distinguished from each other.

In SQL, when an attribute is defined as a primary key of a relation, integrity constraint is
automatically applied.

iv. Key Constraint: It states that primary key value must be unique. It is not allowed to repeat
primary key values.

4. Relational Algebra

In order to implement a DBMS, there must exist a set of rules which state how the database system
will behave.

For instance, somewhere in the DBMS must be a set of statements which indicate that when
someone inserts data into a row of a relation, it has the effect which the user expects.

One way to specify this is to use words to write an 'essay' as to how the DBMS will operate, but
words tend to be imprecise and open to interpretation. Instead, relational databases are more usually
defined using Relational Algebra.

Relational Algebra is:

. The formal description of how a relational database operates
. An interface to the data stored in the database itself

° The mathematics which underpin SQL operations

Operators in relational algebra are not necessarily the same as SQL operators, even if they have the
same name. For example, the SELECT statement exists in SQL, and also exists in relational algebra.

These two uses of SELECT are not the same. The DBMS must take whatever SQL statements the
user types in and translate them into relational algebra operations before applying them to the
database.

4.1 Basic Operations ' Basic Operations
Relational Algebra
i, Select Operation
» Select Operation fi. Project Operation

, . . ili. Union Operation
The select operation selects the tuples (rows) that satisfy the given iv. Set Difference Operaitﬁ o

predicate (condition). The lo.wer case Greek letter Sigma (o) is used v. Cartesian Product
to represent the select operation. <. Operation .~

The predicate appears as a subscript to 6 and argument relation is given in parenthesis following .
Predicates can be defined using the operators =, #, <, <, ,>, 2etc. and they may be connected by
using the connectives (v) or (A). ’

Examples

a. Find all tuples from player relation for which country is India.

Query: Gcountry - “India® (Player)
Result: Playerid | Teamid | Country | Age Runs | Wickets
101 101 India 25 10000 300
104 101 India 28 20000 - 200
106 101 India 22 15000 150
105 101 India 21 12000 400

b. Select all the tuples for whicl_l runs are greater than or equal to 15000.

Query: c}-runs > 15000 (Player)

Result: | Player id | Teamid | Country | Age | Runs | Wickets
104 101 India 28 | 20000 200
106 101 India 72 | 15000 150

c. Select all the players whose runs are greater than 6000 and age is less than 25.

uery: G Player
Q Y runs > 6000 * age <25 (y)

Result: | Playerid | Teamid | Country | Age | Runs | Wickets
108 101 India 22 | 15000 150
109 103 England | 24 | 6000 90

» Project Operation

Projection of a relation P(P-Schema) on the set of attributes Y € P-Schema is the projection of each
tuple of the relation P on the set of attributes Y.

The projection operation is a unary operation and it returns its argument relation with certain
attributes left out. It is denoted by a Greek letter pi(TI). The attributes, which appear in the result, are
listed as a subscript to IT.

Examples

a. List all the countries in player relations.

Query: TI (Player)
country v

Result: Country
India
Pakistan
England
Australia
b. List all the team ids and countries in table Player.

Query : Mream_ 1d country (Player)
Result: | Team id | Country

101 India
102 Pakistan
103 England

104 Australia

» Union Operation

Compatible relations: Two relations R and S are said to be compatible relations if they satisfy the
following two conditions.

a. The relations R and S are of same entity, i.e., the number of attributes are same.

b The domains of the i" attribute of R and i™ attribute of S must be same for all i.
The union of R and S is the set theoretic union of R and S, if R and S are compatible relations.

It is denoted by . The resultant relations P(P = RUS) has tuples drawn from R and such that a tuple
in P is either in R or S or in both of them.

R- Schema (id,name) S - Schema (id, name)
R relation S relation

id Name id Name
101 Raj 101 Raj
102 Rahul 104 Anil
103 Sachin 106 Kapil
104 Anil 107 Sumit
105 Prasad

Relational Model

Depositor relation Borrower relation
Acc. No. Cust- name Loan no. Cust- rame
A 231 Rahul P — 3261 Sachin
A 432 Omkar Q~-6934 Raj
R 321 Sachin S -4321 Ramesh
S 231 Raj T-6281 Anil
T 239 Sumit

Examples

1. P = R u Sis given by the relation

Id Name
101 Raj
102 Rahul
103 Sachin
104 Anil
105 Prasad
106 Kapil
107 Sumit

2, Find the names of customers having an account or loan.

 Query: 11 (Depositor) v 11

(Borrower)
cust name cust name

Result: | Cust- name
Anil
Omkar
Rahul
Raj
Ramesh
Sachin
Sumit

P Set Difference Operation

The set difference operation removes common tuple from the first relation.
It is denoted by ‘—’ sign. The expression R — S results in a relation containing those tuples in R but
not in S. For set difference operation, relations must be compatible relations.

Examples

a. P=R-Sis

id Name
106 Kapil
107 Sumit

Database Mara

b. Find all the customers having an account but not the loan.

Query : 11 (Depositor) — I1 (Borrower)
cust _name cust _ name
Result : | Cust_Name
Rahul
Ombkar
Sumit
c. Find all the customers having a loan but not the account.
Query: T1 (Borrower) —IT (Depositor)
cust _name cust_ name
Result : | Cust_Name
Ramesh
Anil

» Cartesian Product Operation
Cartesian product of two relations is the concatenation of tuples belonging to the two relations.

It is denoted by ‘x* sign. If R and S are two relations, RxS results in a new relation
P, which contains all possible combination of tuples in R and S. For Cartesian product operation,
compatible relations are not required. The schema of resultant relations is given by P - Schema
= R -Schema Il S — Schema

where |l represents concatenation.

The degree / parity of the resultant relation is given by

IP — Schemal = IR — Schemal + IS — Schemal

The cardinality of the resultant relation is given by [Pl = IR * IS|
Examples

a. Employee-Schema = {Emp_id, Name }

Project-Schema = { Proj_name }
Employee Project
Emp_id name Proj_Name
101 Sachin DBMS 1
103 Rahul DBMS 2
104 Omkar
106 Sumit
107 Ashish

R = Employee x Project
R ~ Schema = {Emp_id, Name, Proj_name }

Emp-id Name Proj-name
101 Sachin DBMS 1
101 Sachin DBMS 2
103 Rahul DBMS 1
103 Rahul DBMS 2
104 Omkar DBMS 1
104 Omkar DBMS 2
106 Sumit DBMS 1

106 Sumit DBMS 2
107 Ashish DBMS 1
107 Ashish DBMS 2

If the attribute name is same in both argument relations, then that is distinguished by attaching
the name of the relation from which the attribute originally came.

Customer schema {cust _ id, name}

Employees Schema = {emp _id, name}
R = Customer x Employee

R — Schema = {cust _ id, customer.name, emp _ id, employee.name}.

Customer Employee
Cust_id Name emp_id Name
101 Sachin 201 Omkar
102 Rahul 202 Sumit
103 Ramesh 203 Ashish

Customer x Employee

cust_id | Customer-name | emp_id | Employee.name
101 Sachin 201 Omkar
101 Sachin 202 Sumit
101 Sachin 203 Ashish
102 Rahul 201 Omkar
102 Rahul 202 Sumit
102 Rahul 203 Ashish
103 Ramesh 201 Omkar
103 Ramesh 202 Sumit
103 Ramesh 203 Ashish

Database Managément System

4.2 Addition Operations

» Set Intersection Operation

Yo SR 2
91\ &

Te su&{% Lo 2
Apr. 2012 — 4M
Explain Select and /
Intersection Operations of
Relational Algebra w:th :
example:

Apr.2011-4M

Explain Union and .
Intersection Operanons of
relation at aigebra with

examp . /

P=RnNnS

Intersection operation selects common tuples from the two relations.
For set intersection operation, the two-argument relation must be
compatible relation.

It is denoted by (m). If R and S are any two relations, P = R m S has
tuples drawn from R and S, such that each tuple in P is in R and S.
Result of set intersection operation can also be obtained using set
difference operation.
RAS =R-(R-Y5)

o]

101

104

Examples
a.
R relation S relation
id Name id | Name
101 | Raj 101 | Raj
102 | Rahul 104 | Anil
103 | Sachin 106 | Kapil
104 Anil 107 | Sumit
105 | Prasad
Name
Raj
Anil

b. - Find the names of customers having an account and lean.
Query: Heusi _name (Depositor) M Ieust _ name (Borrower)

Result :

» Division Operatio

Cust_name

Sachin
Raj

n

Division operation is denoted by =+ sign. It is useful in queries, which involve the phrase “for all
objects having all the specified properties”.

)*

7 Relational

Let R (R — Schema) and S (S — Schema) be relations and let S — Schema < R-Schema, i.e., any
attribute of S—Schema is also in R-Schema. The relation R + S is a relation on schema R-Schema —~
S—Schema, i.e., on the schema containing all the attributes of Schema R that are not in Schema S.
A tuple tis in r + s if and only if both the conditions hold.

a. tisin HR—Schema"S__ Schema (R)
For every tuple tg in S, there is a tuple t. in R satisfying both of the following:

Mt [s]=ts] i) t[R-S]=t

A B
Ay | By
A | Bo
Ay ! By
A, | B
A, | B
A5 B,
A, | B
i. ‘
Q
B A
B4 R=P+Q A
Bo A5
ii.
Q A
B R=P=+Q Ay
B, Az
As
As
fii.
Q A
B R=P+Q Ay
Az
Ay
A,
Ay

» Assignment Operation

Assignment operation is denoted by ‘¢’

Relational variable « Expression

The result of the expression to the right hand side of < is assigned to relation variable on the left
side of ¢ . The relation variable may be used in subsequent expressions

Ry ¢ Il ame (Customer)

Ry ¢ Il hame (Employee). R = Ry — Ry

» JOIN Operator
JOIN is used to combine related tuples from two relations:
. In its simplest form the JOIN operator is just the cross product of the two relations.

o As the join becomes more complex, tuples are removed within the cross product to make the
result of the join more meaningful.

. JOIN allows you to evaluate a join condition between the attributes of the relations on which
the join is undertaken.

The notation used is
R JOINjoin condition S

Join Example

R ColA ColB RJOIN R.ColA = S.8.ColA
A 1 A 1 A 1
B 2 D 3 D 3
D 3 E 5 E 4
F 4 :
E 5
S ColA SColB RJOIN R.ColB = S.8colB
A 1 A 1 A 1
C 2 B 2 Cc 2
D 3 D 3 D 3
E 4 F 4 E 4

Figure 3.4: JOIN

Natural Join

Invariably the JOIN involves an equality test, and thus is often described as an equi-join. Such joins
result in two attributes in the resulting relation having exactly the same value. A “natural join' will
remove the duplicate attribute(s).

In most systems a natural join will require that the attributes have the same name to identify
the attribute(s) to be used in the join. This may require a renaming mechanism.

If you do use natural joins make sure that the relations do not have two attributes with the
same name by accident.

Outer Joins

Notice that much of the data is lost when applying a join to two relations. In some cases this lost data
might hold useful information. An outer join retains the information that would have been lost from
the tables, replacing missing data with nulls.

There are three forms of the outer join, depending on which data is to be kept.

i

ii.

iii.

Left Outer Join: The left outer join takes all tuples in the left relation that did not match with
any tuple in the right relation, pads the tuples with null values for all other attributes from the
right relation and adds them to the result of the natural join. Keep data from the left-hand
table.

Right Outer Join: The right outer join is symmetric with the left outer join: It pads tuples
from the right relation that did not match any from the left relation with nulls and adds them to
the result of the natural join.

Keep data from the right-hand table.

Full Outer Join: The full outer join does both of those operations, padding tuples from the
left relation that did not match any from the right relation, as well as tuples from the right
relation that did not match any from the left relation, and adding them to the result of the join.

Keep data from both tables.

Outer Join example 1

R LEFT OUTER JOIN

R ColA ColB R.ColA=SSColA S
A 1 AJT]ATA
B 2 D[3]|D][3
D 3 E|5|E |4
F 4 B2 -
E 5 Fl4 -
R RIGHT OUTER JOIN
s [SColA | SColB RColA=S.SColA S
A 1 AT1TATT
C 2 | [Dl3lD]3
D 3 E|5|E|4
E 4 : cl2

Outer Join example 2

R FULL OUTER JOIN

R ColA ColB R.ColA=S.SColA S
A 1 A1 A1
B 2 D(3;D|3
D 3 EIS5|E|4
F 4 B{2|-|-
E 5 Fl4] -
-1-1C|2

S | SColA | SColB

A 1
C 2
D 3
E 4

Consider the following SQL to find which departments have had employees on the
Accounting' course.

SELECT DISTINCT dname)
FROM department, course, empcourse, employee

WHERE cname = 'Further Accounting’
AND course.courseno = empcourse.courseno
AND empcourse.empno = employee.empno

AND employee.depno = department.depno;

The equivalent relational algebra is

PROJECTdname (department JOINdepno = depno
(PROJECTdepno (employee JOINémpno = empno
(PROJECTempno {(empcourse JOINcourseno = courseno
(PROJECTcoursenc (SELECTcname = 'Further Accounting'
course)

“Further

Solved Examples

1.

Consider the following Relational Database:
Customer (cno, cname, city)
Quotation (gno, qdate, description, amt_quoted, cno)

Customer and Quotation are related with one-to-many
relationship.

Write Relational Algebraic Expression for the following:
i Display customer names having quotation for ‘LCD’.

ii. List all the customers bearing quotation dated 20-May-2010’.

iii. List all the customers who live in ‘M.P.’ or ‘U.P.
iv. Display customers of amt_quoted as Rs. 15,000.

Solution

i

ii.

iii.

iv.

Display customer names having quotation for ‘LCD’.

Customer X Quotation
chame (Gdescription='LCD’ (@))

List all the customers bearing quotation dated ‘20-May-2010’.

c .
I-Icname (quate='20‘May—2010' (Customer M Quotatlon))

List all the customers who live in ‘M.P.’ or ‘U.P.’

Custome
chame (ocity='M.P‘ v 'U.P'. (m r))

Display customers of amt_quoted as Rs. 15,000.

C £
Hename (Camt_quotea »15000 (CUStomer X Quotation))

ii.

Consider the following Relational Database:
Customer (cno, cname, city)
Quotation (quot_no, q_date, description, amt_quoted, cno)

Customer and Quotation are related with one to many
relationships.

Write Relational Algebraic Expression for the following:

i List all the Customers who live in 'Mumbai' or 'Pune’.
Display customer names having quotation for 'Desktop’.
iii. Display customers of amt_quoted as Rs. 10,000.

iv. List all the customers bearing quotation dated '1-1-10'.

=>4

Solution

i.

(customer)
chame (Gcity= "Mumbai* V 0city: *Mumbai*)

11 cha.me (Gdescription= ' Desktop '
1. chame (Gamt_quoted=10000

1v. chama (Gq_dat:‘; t1/1/107

i

ii.

iii.
iv.

(customer NG quotation))
(customer X quotation))

(customer M quotation))

3. Consider the following Relational Database:
Department(dept_no,dept_name,location);
Employee(e_no,ename,addr,salary,designation,dept_no);
Department and Employee are related with one to many

relationship.

Construct queries into Relational Algebra:

i. List all employees who are working as ‘Manager’.

ii. List all employees whose salary is greater than 10,000 and
less than 25,000.

iii. List all employee details working in ‘Accounts’ of ‘Pune’
city.

iv. Display Department Name and Employee Name Working
in ‘Sales’ or ‘Inventory’.

Solution

. (employee pg department)

1. Hename (Gdesignation='mauager') X

. (employee)

1. IMename (Osatary>10,000 A salary<25,000)

. He_no,ename,addr,salary,designaﬁon,dept_no (Gdept_namc= ‘accounts’ location= 'pune')
(employee pq department)

. (employee

1v. ndept_name,e_name (Gdept_name='sales' v dept_name:'inventory') X
department)

4. Consider Relational Database: '
Customer (cust_no, cust_name, address, city)

Loan (loan_no, loan_amt, loan_date; cust_no)

Customer and Loan are related with one-many
relationship.

Write relational algebraic expression for the following:
List loan details of customer name as ‘Mr. Khurana’.
Display customers with loan amount greater than 50,000.
Display customer names who have taken loan on ’10-Mar-2009’ and city as ‘Pune’.
List names of customers who do not have loan at the bank.

Solution

L In loan_amt, loan_date (O custname = “Mr. Khurana” (CUstomer X loan))

ii. IT custname (O loan_amt > 50000 {(cCustomer X loan})

1. IT custname (O 1oan_date = “10-Mar-2009 . city = “pune” (Customer X loan))
iv. II cust_no, custname (Customer) - I cust_no (loan)

Conceptually, a relation can be represented as a table; each column of the table represents an
attribute of the relation and each row represents a tuple of the relation. Mathematically a relation is
a correspondence between a numbers of sets and is a subset of Cartesian product of these sets.
The sets are the domain of the attributes of the relation.

Duplicate tuples are not permitted in a relation. Each tuple is identified uniquely using a subset of
attributes of the relation. Such a minimum subset is called a key (primary) of the relation. The
unique identification property of the key is used to capture relationship between entities. Such a
relationship is represented by a relation that contains a key for each entity involved in the
relationship. '

Relational algebra is a procedural manipulation language. It specifies the operations and order in
which they are to be performed on tuples of relations. The result of this operation is also a relation.
The algebraic relation operations are union, difference, Cartesian product, intersection, projection,
selection, join and division.

Key Terms

* Attribute: A character of an entity or object. An attribute has a name and a data type.

¢ Attribute Domain: Used to organize and describe an attribute’s set of possible values

¢ Candidate Key: A minimal superkey, that is, one that does not contain a subset of attributes
that is itself a superkey.

¢ Composite(bridge) Entity: An entity designed to transform an M: N relationship into two 1:M
relationships. The composite entity’s primary key comprises at least the primary keys of the
entities that it connects.

» Composite Key: Multiple-attribute keys. May be further subdivided.
¢ Domain: Used to organize and describe an attributes set of possible values.

» Entity: Something about which you want to store data; typically a person, place, thing, concept
or event.

* Entity Integrity: The absence of null “values” in a primary key. Guarantees that each entity will
have a unigue identity.

¢ Entity Set: A grouping of related entities.

e EquiJOIN: A join operator that links tables based on an equality condition that compares
specified columns of the tables.

Foreign Key: An attribute (or combination of attributes) in one table whose values must match
the primary key in another table or whose values must be null.

Index: A pointing device that does for a database table what a book index does for a book.
Index Key: The index (file) is composed of a reference value- the index key- and a set of
pointers.

Join Column(s): Columns with common values and attributes. JOIN is one of eight reiational
algebra functions and allows information from two or more tables to be combined. Join is the
real power behind the relational database, allowing the use of independent tables linked by
common attributes. '

Key: An entity identifier based on the concept of functional dependence. May be classified as
Super key, Candidate key, Primary key, Secondary key, and Foreign key.

Key Attribute: Create the entity’s primary key.

Linking Table: A table that implements a composite entity.

Natural JOIN: A relational function that links tables by selecting only the rows with common
values in their common attribute(s).

| « NULL: The absence of an attribute value. Note: a null is not a blank.

~many

r§1_atibnship.

" Relational Model

[Q¢t.2012 — 8M

Chapiten 4
SQL(STRUCTURED
QUERY LANGUAGE)

1. A Brief History of Databases

Modern databases emerged in the 1960s thanks to research at IBM, among other companies. The
research mainly centered around office automation, in particular automating data storage and
indexing tasks that previously required a great deal of manual labor. Computing power and storage
had become much cheaper, making the use of computers for data indexing and storage a viable
solution.

A pioneer in the database field was Charles W. Bachman, who received the Turing Award in 1973
for pioneering work in database technology. In 1970, an IBM researcher named Ted Codd published
the first article on relational databases. ’

Although IBM was a leader in database research, Honeywell Information Systems, Inc., released a
commercial product in 1976 based on the same principles as the IBM information system, but it was
designed and implemented separately from IBM’s work.

e e (=

In the early 1980s, the first database systems built upon the SQL standard appeared from companies
such as Oracle, with Oracle Version 2, and later SQL/DS from IBM, as well as a host of other
systems from other companies.

Now that you have a brief idea of where databases came from, you can turn to the more practical
task of what databases are and why and when to use them. SQL is a standard computer language for
accessing and manipulating databases.

2. Structured Query Language (SQL)

Structured Query Language (SQL) originated with the System R project in 1974 at IBM’s San Jose
Research Center.

The purpose of this project was to validate the feasibility of the relational model and to implement a
DBMS based on this model. The results of this project are well documented in the database
literature. In addition to contributing to the concept of query compilation and optimization and
concurrency control mechanisms, the most salient result of this research project was the development
of SQL.

The System R project, concluded in 1979, was followed by the release of a number of commercial
relational DBMS products from IBM.

The first of these was SQL/DS for IBM’s mid-range computer. Subsequently, DB2 was released for
IBM’s mainframe systems.

SQL (the original version was called SEQUEL and a predecessor of SEQUEL was named
SQUARE) was the data definition and manipulation language for System R.

SQL has emerged as the standard query language for relational DBMSs, and most of the commercial
relational database management system use SQL or a variant of SQL.

The first questions to ask are what SQL is and how do you use it with databases? SQL has three
main roles:

. Creating a database and defining its structure
. Querying the database to obtain the data necessary to answer questions
. Controlling database security

Defining database structure includes creating new database tables and fields, setting up rules for data
entry, and so on, which is expressed by a SQL sublanguage called Data Control Language (DCL).
The next section discusses querying the database.

» Finally, DCL deals with database security. Generally, database security is something that database
administrators handle.

Creating SQL every time you want to change the database structure or security sounds like hard
work, and it is! Most modern database systems allow you to execute changes via a user-friendly
interface without a single line of SQL. '

What is SQL? _
o SQL stands for Structured Query Language
. SQL allows you to access a database

. SQL is an ANSI standard computer language

e SQL can execute queries against a database
. SQL can retrieve data from a database

. SQL can insert new records in a database

. SQL can delete records from a database

° SQL can update records in a database

° SQL is easy to learn

3. SQL is a Standard

SQL is an ANSI (American National Standards Institute) standard computer language for accessing
and manipulating database systems.

SQL statements are used to retrieve and update data in a database.

SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle,
Sybase, etc.

Unfortunately, there are many different versions of the SQL language, but to be in compliance with
the ANSI standard, they must support the same major keywords in a similar manner (such as
SELECT, UPDATE, DELETE, INSERT, WHERE, and others).

3.1 SQL Data Definition Language (DDL)

The Data Definition Language (DDL) part of SQL permits database tables to be created or deleted.
We can also define indexes (keys), specify links between tables, and impose constraints between
database tables.

o ey
'j? 1 o The most important DDL statements in SQL are:
) & .
%y a\%"@; . CREATE TABLE - creates a new database table

. ALTER TABLE - alters (changes) a database table
* DROP TABLE - deletes a database table

U] CREATE INDEX - creates an index (search key)

. DROP INDEX - deletes an index

P SQL Create Database, Table, and Index

Create a Database
To create a database:
CREATE DATABAS database_name

Example
SQL> CREATE DATABASE Student

Create a Table

To create a table in a database:

CREATE TABLE table_name
(

column_namel data_type,
column_name2 data_type,

Example

This example demonstrates how-you can create a table named "Person", with four columns. The
column names will be "LastName", "FirstName", "Address", and "Age":

CREATE TABLE Person

(
LastName varchar2(10),
FirstName varchar,
Address varchar2(20),
Age int;

C'reate Index

Indices are created in an existing table to locate rows more quickly and efficiently. It is possible to
create an index on one or more columns of a table, and each index is given a name. The users cannot
sce the indexes; they are just used to speed up queries.

Note: Updating a table containing indexes takes more time than updating a table without, this is
because the indexes also need an update. So, it is a good idea to create indexes only on columns that
arc often used for a search.

A Unique Index

(C'reates a unique index on a table. A unique index means that two rows cannot have the same index
value.

CREATE UNIQUE INDEX index_name
ON table_name (column_name) ;

The "column_name" specifies the column you want indexed.
A Simple Index

Creates a simple index on a table. When the UNIQUE keyword is omitted, duplicate values are
allowed.

CREATE INDEX index__name
ON
table_name (column_name) ;

‘The "column_name" specifies the column you want to be indexed.
Ixample

This example creates a simple index, named "PersonIndex”, on the LastName field of the Person
(able: '

CRIATE INDEX PersonIndex

ON Person (LastName);

Il you want to index the values in a column in descending order, you can add the reserved word
DESC after the column name:

CREATE INDEX PersonIndex
ON Person (LastName DESC);

If you want to index more than one column you can list the column names within the parentheses,
scparated by commas:

CRIFATE INDEX PersonlIndex
ON Person (LastName, FirstName);

» Sql Alter Table
The ALTER TABLE statement is used to add or drop columns in an existing table.

i. ALTER TABLE table_name
ADD column_name datatype;

ii. ALTER TABLE table_name
DROP COLUMN column_name;

Note: Some database systems don't allow the dropping of a column in a database table (DROP

COLUMN column_name).

Person

LastName | FirstName | Address
Waghmare Vikas Varje
Example

To add a column named "City" in the "Person” table:

ALTER TABLE Person ADD City
varchar2 (30);

Result
LastName | FirstName | Address | City
Waghmare Vikas Varje
Example

To drop the "Address" column in the "Person" table:

ALTER TABLE Person DROP COLUMN Address

Result

» SQL Drop Index, Table and Database

LastName

FirstName

City

Waghmare

Vikas

Drop Index

You can delete an existing index in a table with the DROP INDEX statement.

Syntax for Microsoft SQLJet (and Microsoft Access):

DROP INDEX index_name ON
table_name

sQL

Syntax for MS SQL Server:

DROP INDEX
table_name.index_name

Syntax for IBM DB2 and Oracle:

DROP INDEX index_name

Syntax for MySQL.:

ALTER TARBRLE table_name DROP INDEX
index_name

Delete a Table or Database

To delete a table (the table structure, attributes, and indexes will also be deleted):
DROP TABLE table_name

To delete a database

DROP DATARASE database_name

Truncate a Table

What if we only want to get rid of the data inside a table, and not the table itself? Use the
TRUNCATE TABLE command (deletes only the data inside the table):

TRUNCATE TABLE table_name

3.2 SQL Data Manipulation Language (DML)

SQL (Structured Query Language) has syntax for executing queries. But the SQL language also
includes syntax to update, insert, and delete records.

These query and update commands together form the Data Manipulation Language (DML) part of

SQLZ d&hﬁ
L O

e INSERT INTO: inserts new data into a database table 5 1 £
&, &

L SELECT: extracts data from a database table
) UPDATE: updates data in a database table
) DELETE: deletes data from a database table

' Oct. 2011 - 40
List various DML
“commands. Explain any
one with example.

» SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into a table.
Syntax

INSERT INTO table_name VALUES (valuel,value2,....)
You can also specify the columns for which you want to insert data:

INSERT INTO table_name (columnl, column2,...)
VALUES (valuel, value2,....)

Example: Insert a New Row

"Persons" table:

LastName | FirstName | Address | City

Joshi Sachin Kothrud | Pune

SQL statement:

INSERT INTO Persons

VALUES ('Gaikwad', 'Vikas', 'Wagholi', Pune')
Will give this result:
LastName FirstName Address City
Joshi Sachin Kothrud Pune
Gaikwad Vikas Wagholi Pune
Insert Data in Specified Columns
"Persons" table:
LastName FirstName Address City
Joshi Sachin Kothrud Pune
Gaikwad Vikas Wagholi Pune
And This SQL statement:
INSERT INTO Persons (LastName, Address)
VALUES ('Kulkarni', 'Katraj')
Will give this result:
LastName FirstName Address City
Joshi Sachin Kothrud Pune
Galkwad Vikas Wagholi Pune
Kuikarni Katraj

sQL

» The SQL SELECT Statement

The SELECT statement is used to select data from a table. The tabular result is stored in a result

table (called the result-set).

Syntax

SELECT column_name (s)

Note: SQL statements are not case sensitive. SELECT is the same as select.

Example

To select the content of columns named "LastName" and "FirstName", from the database table called

"Persons", use a SELECT statement like this:

FROM table_name

SELECT LastName,FirstName FROM Persons

The database table "Persons":

LastName FirstName Address City
Rathod Raj Katraj Pune
Jadhayv Shree CIDCO Aurangabad

Sen Vijay Anand Nagar Beed
Result
LastName FirstName
Rathod Raj
Jadhav Shree
Sen Vijay
Select All Columns

To select all columns from the "Persons” table, use a * symbol instead of column names, like this:

SELECT * FROM Persons

Result
LastName | FirstName Address City
Rathod Raj Katraj Pune
Jadhav Shree CIDCO Aurangabad
Sen Vijay Anand Nagar Beed

Condition specification (WHERE clause)

To select Persons from the "Persons" table where persons city is Pune, use a WHERE clause after
SELECT statement, like this:

SELECT * FROM
TableName WHERE

Condition
Example
SELECT * FROM Person WHERE City= ‘Pune’
Result ‘
LastName | FirstName | Address | City
Rathod Raj Katraj Pune

The SELECT DISTINCT Statement
The DISTINCT keyword is used to return only distinct (different) values.

The SELECT statement returns information from table columns. But what if we only want to select
distinct elements? ‘

With SQL, all we need to do is to add a DISTINCT keyword to the SELECT statement:
Syntax

SELECT DISTINCT column_name(s) FRCM table_name

Example
To select ALL values from the column named "Company" we use a SELECT statement like this:
SELECT Company FROM Orders

"Orders'' table

Company | OrderNumber
S1 3412
IBM 2312 -
Texas 4678
Texas 6798
Result
Company
St
IBM
Texas
Texas

Note that "Texas" is listed twice in the result-set.

To select only DIFFERENT values from the column named "Company" we use a SELECT
DISTINCT statement like this:

SELECT DISTINCT Company FROM Orders

Result

Company
S1
IBM
Texas

Now "Texas" is listed only once in the result-set.

The SELECT INTO Statement

The SELECT INTO statement is most often used to create backup copies of tables or for archiving
records.

Syntax

SELECT column_name (s) INTO newtable [IN externaldatabase]
FROM source

Example

The following example makes a backup copy of the "Persons" table:
SELECT * INTO Persons_backup FROM Persons

The IN clause can be used to copy tables into another database:

SELECT Persons.* INTO Persons IN 'Backup.mdb' FROM Persons

If you only want to copy a few fields, you can do so by listing them after the SELECT statement:

SELECT LastName,FirstName INTO Persons_backup FROM Persons

You can also add a WHERE clause. The following example creates a "Persons_backup" table with
two columns (FirstName and LastName) by extracting the persons who lives in " Washington " from
the "Persons" table:

SELECT LastName,Firstname INTO Persons_backup FROM Persons WHERE
city='Washington'

Selecting data from more than one table is also possible. The following example creates a new table
"Empl_Ord_backup" that contains data from the two tables Employees and Orders:

SELECT Employees.Name,Orders.Product
INTO Empl_Ord_backup

FROM Employees

INNER JOIN Orders

ON
Employees.Employee_ID=Orders.Employee_ID

» ORDERBY

Sort the rows .
The ORDER BY clause is used to sort the rows.

Orders

Company | OrderNumber
Satyam 3412
Armstrong 5678
WNS 6798
WNS 2312

Example
To display the company names in alphabetical order:

SELECT Company, OrderNumber FROM Orders
ORDER BY Company

~ Result
Company | OrderNumber
Armstrong 5678
Satyam 3412
WNS 6798
WNS 2312
Example

To display the company names in alphabetical order AND the OrderNumber in numerical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company,

OrderNumber
Result
Company | OrderNumber
Armstrong 5678
Satyam 3412
WNS 2312

WNS 6798

Example

To display the company names in reverse alphabetical order:

SELECT Company,

OrderNumber FROM Orders

ORDER BY Company DESC

Result
Company OrderNumber
WNS 6798
WNS 2312
Satyam 3412
Armstrong 5678
Example

To display the company names in reverse alphabetical order AND the OrderNumber in numerical

order:

SELECT Company,

OrderNumber FROM Orders.
ORDER BY Company DESC, OrderNumber ASC

Resuit
Company | OrderNumber
WNS 2312
WNS 6798
Satyam 3412
Armstrong 5678

Notice that there are

two equal company names (WNS) in the result above. The only time you will
see the second column in ASC order would be when there are duplicated values in the first sort

column, or a handful of nulls.

» JOIN Statement

SQL does not have a direct representation of the join operation. However, the type of join can be
specified by an appropriate predicate in the where clause of a select statement, wherein the relations
to be joined are specified in the from clause. The join is performed by using the appropriate tuples of
the participating relations, followed by selection and projection. Consider the following SQL
statement. The relation name precedes the attribute name, the two being separated by a period. This
is used to distinguish identical attribute names.

method of qualifying

Select Tl.all,tl
From T1,T2
Where T1l.alj=T2.

.al2...,Tl.aln,

azk

T2.all,t2.al2....,T2.aln

This statement is evaluated by performing a Cartesian product of the tables T1, T2, and tuples
satisfying the where clause are selected.

Example

Retrive the order numbers, client names and their order dates from the client_master and sales_order
tables.
The order date should be displayed in ‘DD/MM/YY" format and sorted in ascending order.

Table name: sales_order

order no | client_no | order_date
100 C115 12-Apr-96
101 C114 23-Jun-96
102 C111 01_Aug-96

Table name: client_master

client no | name | bal due
Ct11 Vijay 500
Ci11i2 Sachin 100
C113 Ramesh. 0
C114 Prasad 600

C115 Kiran 50
SELECT order_no, name, to_char(order_date, “DD/MM/YY”) “Order Date” FROM sales_order,
client_master ~WHERE client_master.client_no = sales_order.client_ no ORDER BY
" to_char(order_date, “DD/MM/YY");
Result '
order_no | client_no | order_date
102 C111 12-Apr-96
101 C114 23-Jun-96
100 C115 01_Aug-96

» Queries within Queries

SQL allows queries within queries, or subqueries, which are SELECT statements inside SELECT
statements. This might sound a bit odd, but subqueries can actually be very useful. The downside,
however, is that they can consume a lot of processing, disk, and memory resources. A subquery’s
syntax is just the same as a normal SELECT query’s syntax. As with a normal SELECT statement, a
subquery can contain joins, WHERE clauses, HAVING clauses, and GROUP BY clauses.
Specifically, this chapter shows you how to use subqueries with SELECT statements, either
returning results inside a column list or helping filter results when used inside a WHERE or
HAVING clause; to update and delete data by using subqueries with UPDATE and DELETE
statements; and with operators such as EXISTS, ANY, SOME, and ALL, which are introduced later
in this chapter.

Subgqueries are particularly powerful when coupled with SQL operators such as IN, ANY, SOME,
and ALL, which are covered shortly. Before starting, you should note that versions of MySQL prior
to version 4.1 do not fully support subqueries and many of the examples in this chapter won’t work
on early versions of MySQL.

A nested query is a query with another query embedded in it.
- Embedded query=sub query

A sub query can in turn have sub queries. Nested queries are convenient for computing results that
depend on some intermediate results that need to be computed. In SQL a sub query can appear in the
FROM or Where or HAVING clause.

Example
2336 Cho Beginner snowbdérd 18
Customers | 2334 | Luke Inter snowboard | 25
1887 | Ice Advanced | ski 20
2339 | Paul Beginner | ski 33
Activities

na

2336 | S3 | 01/05/03

2336 S 01/06/03 S1 Mountain Run | blue
2336 St 01/07/03 82 Olympic Lady | black
1887 S2 01/07/03 S3 Magic Carpet | green
1887 St 01/07/03 S4 KT-22 black

2334 52 01/05/03

Find the names of customers who did not go on the slope on 01/07/03

SELECT cname

FROM Customers ¢

WHERE c.sid NOT IN

(SELECT.sid FROM Activities a
WHERE a.day=“01/07/03")

» GROUPBY..

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all
column values every time they are called, and without the GROUP BY function it was impossible to
find the sum for each individual group of column values.

The syntax for the GROUP BY function is:

SELECT column, SUM(column) FROM table GROUP RY column

GROUP BY Example

"Sales" Table:

SQL:

SELECT Company,

‘Company | Amount
T System 5500
IBM 4500
T System 7100

Returns this result:

The above code is invalid because the column returned is not part of an aggregate. A GROUP BY

SUM (Amount) FROM Sales
Company | SUM(Amount)
T System 17100
IBM 17100
T System 17100

clause will solve this problem:

SELECT Company, SUM(Amount)

GROUP BY Company

Returns this result

>

HAVING... was added to SQL because the WHERE keyword could not be used against aggregate
functions (like SUM), and without HAVING... it would be impossible to test for result conditions.

HAVING...

FROM Sales
Company | SUM(Amount)
T System 12600
IBM 4500

The syntax for the HAVING function is:

SELECT column, SUM{(column)

GROUP BY column

HAVING SUM(column)

This "Sales" Table:

FROM table

condition value

Company | Amount

T System 5500
IBM 4500

T System 7100

This SQL:

SELECT Company, SUM(Amount) FROM Sales

GROUP BY Company
HAVING SUM(Amount)>10000

Returns this result

Company | SUM(Amount)
T System 12600

» BETWEEN.. AND

The BETWEEN ... AND operator selects a range of data between two values. These values can be
numbers, text, or dates.

SELECT column_name FROM table_name
WHERE column_name
BETWEEN valuel AND valueZ

Original Table (used in the examples) -

LastName | FirstName Address City
Chavan Harish Hadapsar Pune
Datt ~ Nitin Tathwade Pune
Sen Prasad Anand Nagar | Aurangabad
Singh Sachin Katraj Pune

Example 1

To display the persons alphabetically between (and including) “Harish" and exclusive "Prasad”, use
the following SQL:

SELECT * FROM Persons WHERE LastName
BETWEEN 'Harish' AND 'Prasad'

Result
LastName | FirstName | Address | City
Chavan Harish Hadapsar | Pune
Dait Nitin Tathwade | Pune

IMPORTANT! The BETWEEN...AND operator is treated differently in different databases. With
some databases a person with the LastName of "Harish" or "Prasad" will not be listed
(BETWEEN..AND only selects fields that are between and excluding the test values).

With some databases a person with the last name of "Harish " or " Prasad " will be listed
(BETWEEN..AND selects fields that are between and including the test values). With other
databases a person with the last name of "Harish " will be listed, but " Prasad" will not be listed

(BETWEEN..AND selects fields between the test values, including the first test value and excluding
the last test value). Therefore: Check how your database treats the BETWEEN....AND operator!

» AND&OR

AND and OR join two or more conditions in a WHERE clause.

The AND operator displays a row if ALL conditions listed are true. The OR operator displays a row
if ANY of the conditions listed are true.

Original Table (used in the examples)

LastName | FirstName Address City
Hansen OCla Timoteivn 10 | Sandnes

Svendson Tove Borgvn 23 | Sandnes

Svendson Stephen Kaivn 18 Sandnes

Example

Use AND te display each person with the first name equal to "Tove", and the last name equal to
"Svendson": ‘

SELECT * FROM Persons
WHERE FirstName='Tove'
AND LastName='Svendson'

Result

Address
Borgvn 23

FirstName
Tove

City
Sandnes

LastName
Svendson

Example

Use OR to display each person with the first name equal to "Tove", or the last name equal to
"Svendson": :

SELECT * FROM Persons
WHERE firstname='Tove'
OR lastname='Svendson'

Result
LastName | FirstName | Address | City
Svendson Tove Borgvn 23 | Sandnes
Svendson Stephen Kaivn 18 | Sandnes

Example

You can also combine AND and OR (use parentheses to form complex expres:.ons):

SELECT * FROM Persons WHERE
(FirstName='Tove'OR FirstName='Stephen')

AND LastName='Svendson'

Result
LastName | FirstName | Address City
Svendson | Tove Borgvn 23 | Sandnes
Svendson | Stephen Kaivn 18 | Sandnes
» Pattern Matching

The LIKE predicate allows for a comparison of one string value with another string value, which is
not identical. This is achieved by using wildcard characters. Two wildcard characters that are
available are:

For character data types: The Percent sign (%) matches any string.

The Underscore (_) matches any single character.

Example

1.

SELECT * FROM client_master WHERE name LIKE ‘Sa%’;

Retrieves all information about client whose names begin with the letters ‘Sa’ from
client_master.

SELECT * FROM client_master WHERE name LIKE ‘Sa_’

Retrieves all information about client whose names beginning with letter ‘Sa’ and having
length three characters.)

IN and NOT IN predicates:

The arithmetic operator (=) compares a single value to another single value. In case a value
needs to be compared to list of values then the IN predicate is used. One can check a single
value against multiple values by using the IN predicate.

Retrieves the name from table client_master where the name is either Vijay, Sachin, Ramesh,
Prasad, Kiran.

SELECT name FROM client_master WHERE name IN (‘Vijay’,’Sachin’,’"Ramesh’,’Prasad’);

The NOT IN predicate is the opposite of the IN predicate. This will select all the rows where
values do not match all of the values in the list.

SELECT name FROM client_master WHERE name NOT IN
(‘Vijay’,’Sachin’,’Ramesh’,’Prasad’);

SQL

3.3 Arithmetic and Aggregate operators

SQL provides a set of built in functions. The operand of each of
these functions is column of an existing relation. NULL values are
ignored except (COUNT *). The function is described below.

p Aggregation

Aggregation is one way of saying a summary of data. For example,
aggregating data might involve finding the average age of film club
members or counting how many members live in a particular state.
What you've learned so far allows you to answer questions
pertaining to which film categories each member likes or what
Sachin’s favorite film category is.

However, by the end of this chapter, using a combination of groups and aggregation will enable you
to answer questions such as how many members like thrillers. The difference between grouping and
aggregation is that grouping finds out information about a particular record, whereas aggregation
summarizes more than one record.

Compute summary results over a table. E.g.,
1. Find the average/min/max score of all students who took CS180.
2. Find the total number of snowboarders.

3. Find total salary of employees in Sales department.

» Counting Results

You can use the COUNT () function to count the number of records in the results. It’s used in the
SELECT statement along with the column list. Inside the brackets, insert the name of the column
you want counted. The value returned in the results set is the number of non-NULL values in that
column.

Alternatively, you can insert an asterisk (*), in which case all columns for all records in the results
set are counted regardless of whether the value is NULL or not. The COUNT () function can also
accept expressions, for example COUNT(Memberld + Categoryld).

Execute the following SQL.:
SELECT COUNT(*) FROM MemberDetails;

You get the answer 14, which is how many recards the SQL returns, which, given the lack of a
WHERE clause, represents all the records in the MemberDetails table. However, if you execute the
following SQL, you get the answer 13:

l

SELECT COUNT (Street) FROM MemberDetails;

Why 13 and not 147 After all, it’s the same SQL with no WHERE clause, sc surely it has the same
number of records regardless of which column is counted.

The difference is that when a column name is specified in the COUNT () function’s arguments, only
the columns where the value is not NULL are counted.

As you can see from the following table, which is the result of SELECT Memberld, Street, City,
State FROM MemberDetails, one of the records in the Street, City, and State columns contains a

NULL value:

Member Details

ara une Maharashtra
2 Hadapsar Aurangabad Maharashtra
3 Pune Nagar | Chiplun Maharashtra
4 Katraj Goa Maharashtra
5 Nagar raod | Beed Maharashtra
6 Ganesh Amhemadnagar | Maharashtra
7 Saraf Sangali Maharashtra
8 Hadapsar Kolhapur Maharashtra
9 Pune Nagar | Pune Maharashtra
10 Pune Nagar | Wasmat Maharashtra
11 Katraj Purandar Maharashtra
12 Nagarraod | Yewatmal Maharashtra
13 Ganesh Chandrapur Maharashtra
14 Saraf Amrawati Maharashtra
15 NULL NULL NULL

» Adding Results

The SUM() function adds up all the values for the expression passed to it as an argument, either a
column name or the result of a calculation. The basic syntax is as follows
SUM(expression_to_be_added_together)

For example, the following code adds up all the values in the MemberID column for all records in
the Category table:

SELECT SUM(MemberID) FROM MemberDetails;

The result of the statement is 120. Given that the MemberiD column is simply a primary key
column, the result is not that meaningful. SUM() can also contain expressions and calculations:

> MAX() and MIN() in Results

The MAX() and MIN() aggregate functions return the lowest and highest values found in a results
set, respectively.

Basically, it’s the same as if the results were ordered and the first and last results were picked from
the list. Unlike the SUM() and AVG() functions, you can use MAX() and MIN() with data types
. other than numerical data types.

For example, you can use MAX() and MIN() to find the earliest or latest date or time in a date or
time field. The following SQL finds the youngest and oldest members in the MemberDetails table:

SELECT MAX (MemberID, MIN(MemberID) FROM MemberDetails;
It provides the following results:
MAX(MemberID) MIN(MemberID)

1 15

In addition to a date or time field, you can also choose a character field. Again, the MIN() and
MAX() are the values for the specified column for the first and last records in an ordered results set.

DUAL Table

DUAL is a small Oracle worktable, which consists of only one row and one column, and contains
the value x in that column. Besides arithmetic calculations, it also supports date retrieval and it’s -
formatting. '

Example
SQL> SELECT 2*5 FROM dual;
Result

2*5=10

Example
SQL> SELECT sysdate FROM dual;

Result

SYSDATE

04-MAY-2008

» Numeric Functions

Syntax: ABS(n)
Returns the absolute value of n.

Example

SQL> SELECT ABS(-15) “Absolute” FROM dual

Result
Absolute

Syntax: POWER(m,n)
Returns m raised to nth power.

Example
SQL>SELECT POWER(3,2) “RAISED” FROM dual

Result

Syntax: ROUND(n,m)
Returns n rounded to m places right of the decimal point.

Example
SQL> SELECT ROUND(15.19,1) “ROUND” FROM dual

Result
ROUND

Syntax: SQRT(n)
Returns square root of ‘n” if n<0, NULL, SQRT returns a real result.

Example
SQL> SELECT SQRT(25)“SQUARE ROOT” FROM dual

Result
SQUARE ROOT

ii.

iii.

iv.

String Functions

LOWER(char): Returns char, with all letters in lower case.
Syntax: LOWER (char)

Example
SQL>SELECT LOWER(‘RAKESH DESHMUKH‘) “LOWER” FROM dual

Result
LOWER

rakesh deshmukh
INITCAP(char): Returns string with the first letter in upper case.
Syntax: INITCAP (char)

Example
SQL>SELECT INITCAP(‘PRAKASH’) “TITLE CASE” FROM dual

Result
TITLE CASE

Prakash

UPPER(char): Returns char, with all letters forced to uppercase.
Syntax: UPPER (char)

Example
SQL> SELECT UPPER(‘mango’) FROM dual

Result
UPPER (‘mango’)

SUBSTR(char, m[,n]): Returns a portion of char, beginning at character m exceeding upto n
characters. If n is omitted, result is returned up to the end char. The first position of char is 1

Syntax: SUBSTR (char, m[,nl)

Example
SQL> SELECT SUBSTR(‘SELECT’,3,4) “SUBSTRING” FROM dual

Result
SUBSTRING

V.

vi.

vii.

viii.

LENGTH(char): Returns the length of char

Syntax: LENGTH (char)

Example

SQL> SELECT LENGTH(‘BEGINNING‘)“LENGTH” FROM dual

Result
LENGTH

LTRIM (char [,set]): Removes characters from the left of char with initial characters
removed upto the first character no in set.

Syntax: LTRIM (char [,set])
Example
SQL> SELECT LTRIM(‘NISHA’,’N’) “LEFT TRIM” FROM dual

Result
LEFT TRIM

RTRIM (char [,set]): Removes characters from the right of char with initial characters
removed upto the last character no in set.

Syntax: RTRIM (char [,set])

Example

SQL> SELECT RTRIM (‘NISHA’,’A’) “RIGHT TRIM” FROM dual

Result
RIGHT TRIM

LPAD (charl,n,[char2]): Returns charl, left padded to length n with sequence of character in
char2.

Syntax: LPAD (charl,n, [char2])

Example

SQL> SELECT LPAD (‘Hello',10, “‘*‘) “LPAD” FROM dual

ix.

i.

ii.

**x* Hello

RPAD(charl,n,[char2]): Returns charl, right padded to length n with sequence of character
in char2.

Syntax: RPAD (charl,n, [char2])

Example
SQL> SELECT RPAD(‘Hello ’,10,’*’) “RPAD” FROM dual

Result

Hello ***x*

Date Functions
TO_DATE (char,[,fmt]): Converts a character field to a date field.
Syntax: TO_DATE (char, [, fmt])

Example

SQL> INSERT INTO sales_order (order_no,order_date)
VALUES(“087650, TO_DATE('30-SEP-8510:55A.M."', 'DD-MM-YY HH:MM A.M.');

MONTHS_BETWEEN(D1,D2)
Syntax: MONTHS_BETWEEN (D1, D2)
Returns number of months between D; and D, .

Example

SQL>SELECT MONTHS_BETWEEN('02-FEB-92','02-JAN-92') “MONTHS” FROM dual

Result
MONTHS

» Examining Objects Created by a User

Finding out the tables created by user

To determine which table the user has access to the syntax is

SELECT * FROM TAB;

The objects name and type are displayed. The object types, i.e., the TABTYPE column is the table

TAB will be table, since this is the only object created so far.

TNAME TABTYPE

CLIENT TABLE
STUDENTTABLE

Finding out column details of a table created

DESCRIBE tablename;

This command displays the column names, the data types and the special attribute connected to the

table.

Describe Student

NAME TYPE
NAME CHAR
ROLLNO | NUMBER

3.4 SQL UPDATE Statement

The UPDATE statement is used to modify the data in a table.

Syntax

UPDATE table_name
SET column_name = new_value
WHERE column_name = some_value

Person
LastName FirstName Address City
Joshi Sachin Kothrud Pune
Kale Anil Hadapsar

Update one Column in a Row.

We want to add a first name to the person with a last name of "Kale":

UPDATE Person SET FirstName = 'Anil'
WHERE LastName = 'Kale'
Result
LastName FirstName Address City
Joshi Sachin Kothrud Pune
Kale Anil Hadapsar ‘

Update several columns in a Row.

We want to change the address and add the name of the city:

UPDATE Person

SET Address='Swarget', City = 'Pune'
WHERE LastName = 'Kale'
Result ‘
LastName | FirstName | Address | City
Joshi Sachin Kothrud | Pune
Kale Anil Swarget | Pune
3.5 SQL DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

DELETE FROM table_name

WHERE column_name =

Person
LastName | FirstName | Address | City
Joshi Sachin Kothrud | Pune
Kale Anil Swarget | Pune

some_value

Delete.a Row

"Anil Kale" is going to be deleted:

DELETE FROM Person WHERE LastName = 'Kale'
Result

LastName FirstName Address City

Joshi Sachin Kothrud Pune

Delete All Rows

It is possible to delete all rows in a table without deleting the table. This means that the table
structure, attributes, and indexes will be intact:
DELETE FROM table_name

or
DELETE * FROM table_name

4. View

In SQL, a VIEW is a virtual table based on the result-set of a SELECT statement.
A view contains rows and columns, just like a real table.

The fields in a view are fields from one or more real tables in the database. You can add SQL
functions, WHERE, and JOIN statements to a view and present the data as if the data were coming
from a single table.

Note: The database design and structure will NOT be affected by the functions, where, or join
statements in a view.

Syntax

CREATE VIEW view_name AS
SELECT column_name (s)
FROM table_name
WHERE condition

Note: The database does not store the view data. The database engine recreates the data, using the
view's SELECT statement, every time a user queries a view.

Example

Consider the client_master table referred above had more additional fields like Address1, Address2,
City, PinCode, State, Etc. And we are suppose to create view on the client_master table for the
administration department. The view would be created as below.

CREATE VIEW vw_clientadmin AS SELECT name, address1, address2, city, pincode, state FROM
client_master. Once a view has been created it can be queried exactly like base table.

Syntax
SELECT columnname, columnname from viewname;

Example
SELECT name, city FROM vw_clientadmin WHERE city IN (‘Pune', 'Aurangabad')

Chapter 5
RELATIONAL

DATABASE ‘smm

1. Introduction

For database administrator, planning physical structure of database is critical before building the
database. Similarly for application developer careful planning and creation of the database objects is
crucial before actually starting the development of the application.

Designing and normalizing tables

The theory of normalization is the key element of databasagn while creating application schema.
Normalization is the process of decomposing and arranging the attributes in the schema, which
results in a set of tables, with varying structure. Purpose of normalization is to make the tables as
simple as possible.

Normalization directly affects the functionality and performance of an application. for example,
CUSTOMER (ID, NAME, and ADDRESS).

Database Managerrsn

If data is stored in this format it is not possible to sort the data on the last name of the customer.
Instead in the above structure if CUSTOMER (ID, NAME, LNAME, ADDRESS) structure is used
we can obtain the required results.

whe,

A
N °{; The main focus in normalization process is on reducing the
h+]
9 @,f redundancy of information within the database.

© ot o

Another focus is on determining the relationships that exist between
different attributes in the schema. This identification of
relationships allows basis for determining the primary keys and
referential integrity rules in a database.

Oct. 2012~ 4M
Explain normalizati
example. :-
Apr.12, 11, Oct.11 - 4M
Write a short note o
Normalization.

Data integrity: All of the data in the database are consistent, and
satisfy all integrity constraints.

Data redundancy: If data in the database can be found in two different locations (direct
redundancy) or if data can be calculated from other data items (indirect redundancy) then the data is
said to contain redundancy. '

Data should only be stored once and avoid storing data that can be calculated from other data already
held in the database. During the process of normalization redundancy must be removed, but not at
the expense of breaking data integrity rules.

If redundancy exists in the database then problems can arise when the database is in normal

operation:

. When data is inserted the data must be duplicated correctly in all places where there is
redundancy.

For instance, if two tables exist for in a database, and both tables contain the employee name,
then creating a new employee entry requires that both tables be updated with the employee
name.

. When data is modified in the database, if the data being changed has redundancy, then all
versions of the redundant data must be updated simultaneously.

So, in the employee example, a change to the employee name must happen in both tables
simultaneously.

The removal of redundancy helps to prevent insertion, deletion, and update errors, since the
data is only available in one attribute of one table in the database.

The data in the database can be considered to be in one of a number of normal forms'.
Basically the normal form of the data indicates how much redundancy is in that data. The
normal forms have a strict ordering:

1. 1% Normal Form
2 2™ Normal Form
3. 3" Normal Form
4 BCNF

There are other normal forms, such as 4th and 5th normal forms. They are rarely utilized in system
design and are not considered further here.

To be in a particular form requires that the data meets the criteria to g‘"“”"‘*o&
also be in all normal forms before that form. ¥ 4 8

% 2
Thus to be in 2" normal form the data must meet the criteria for Apr.11,10 - 4M @"*“w“"'

both 2™ normal form and 1" normal form. The higher the form the Oct11,09-4M
more redundancy has been eliminated. Discuss Anomalies of
Un-normalized Database. |

» Normalization Avoids
. Duplication of Data: The same data is listed in multiple lines of the database.

° Insert Anomaly: A record about an entity cannot be inserted into the table without first
inserting information about another entity .

For example: If system is having M.C.M ‘s 5 subject marks and if there is addition of 6%
subject then adding valid data to nonexisting subject is Insertion anamoly.

. Delete Anomaly: A record cannot be deleted without deleting a record about a related entity.

For example: If student registered in a given course discontinues the course, the information
as to which professor is offering the course will be lost if this is the only relation in the
database showing the association between a faculty member and the course he or she teaches.

. Update Anomaly: Cannot update information without changing information in many places.
To update customer information, it must be updated for each sales order the customer has
placed. '

Normalization is a three stage process ~ After the first stage, the data is said to be in first normal
form, after the second, it is in second normal form, after the third, it is in third normal form

» Before Normalization one should take the following care -

1. Begin with a list of all of the fields that must appear in the database. Think of this as one big
table.

2. Do not include computed fields.

One place to begin gettingy this information is from a printed document used by the system.

Additional attributes besides those for the entities described on the document can be added to
the database.

& ow

2. Integrity Constraints

An integrity constraint is a rule that restricts the values that may be
present in the database. The relational data model includes
constraints that are used to verify the validity of the data as well as
adding meaningful structure to it:

i. Entity integrity: The rows (or tuples) in a relation represent entities, and each one must be
uniquely identified.

Hence we have the primary key that must have a unique non-null value for each row.

ii. Referential integrity: This constraint involves the foreign keys. Foreign keys tie the relations
together, so it is vitally important that the links are correct.

Every foreign key must either be null or its value must be the actual value of a key in another
relation.

3. Normal Form

Normalization theory is built around the concept of normal forms. A
relation is said to be in a particular normal form if it satisfies a
certain specified set of constraints.

Universe of relation {normalized and unnormalized)

1NF refations (normalized relations)

2NF relations

3NF relations

BCNF relations

4NF relations
PJ/NF (5NF} relations

Figure 5.1: Normal forms

Numerous normal forms have been defined as shown in figure 5.1. Codd originally defined first,
second and third normal form (INF, 2NF and 3NF).

Figure 5.2 shows Supplier-and-Parts database which will be used to explain the concept of
normalization and show how relations are reduced to a particular normal form.

Before we begin with the concept of normal form let us see the concept of functional dependency.

4. Functional Dependency

Sometimes the starting point for understanding data is given in the form of relations and functional
dependencies. This would be the case where the starting point in the process was a detailed
specification of the problem. We already know what relations are. Functional dependencies are rules
stating that given a certain set of attributes (the determinant) determines a second set of attributes.

The definition of a functional depeﬁdency looks like A->B. In this case B is a single attribute but it
can be as many attributes as required (for instance, X->J, K, L, M).

In the functional dependency, the determinant (the left hand side of the -> sign) can determine the set
of attributes on the right hand side of the -> sign. This basically means that A selects a particular
value for B, and that A is unique.

In the second example, X is unique and selects a particular set of values for J,LK,L, and M. It can also
be said that B is functionally dependent on A. In addition, a particular value of A always gives you a
particular value for B, but not vice-versa.

Consider this example:

R(matric_no, firstname, surname, tutor_number, tutor_name)
tutor_number -> tutor_name

Here there is a relation R, and a functional dependency that indicates that:

] instances of tutor_number are unique in the data
1 from the data, given a tutor_number, it is always possible to work out the tutor_name.
. As an example tutor number 1 may be “Mr Smith”, but tutor number 10 may also be “Mr

Smith”. Given a tutor number of 1, this is ALWAYS “Mr Smith”. However, given the name
“Mr Smith” it is not possible to work out if we are talking about tutor 1 or tutor 10.

There is actually a second functional dependency for this relation, which can be worked out from the
relation itself. As the relation has a primary key, then given this attribute you can determine all the
other attributes in R. This is an implied functional dependency and is not normally listed in the list of
functional dependents.

Thus functional dependency FD can be defined as, “Given a relation R, attribute Y of R is
functionally dependent on attribute X of R if and only if each X- value in R has associated with it
precisely one Y value in R (at any one time)”

In the suppliers and parts database, for example, attributes SNAME, STATUS & CITY of relation S
are each functionally depend on attribute S#.

In symbol we have,

S.5# - S.NAME
S.S# — S.STATUS
S.S# — S.CITY

Which can be also represented S.S# — S.(SNAME, STATUS, CITY). Here we can agree upon that
the combination (SNAME, STATUS, CITY) are the composite attribute of relation S.

A functional dependence is a special form of integrity constraint. When we say, for example, that the
relation S satisfy the FD S.S# — S.CITY we mean that every legal extension (tabulation) of that
relation satisfies that constraints; in other words, we are saying something about the intension of the
relation.

It is always convenient to represent the FD’s in a given set of relations by means of a functional
dependency diagram figure 5.3 shows the functional dependencies in relation S,P,SP.

We also introduce the concept of full functional dependence.

“Attribute Y is fully functionally dependent on attribute X if it is functional dependent on X and
functionally dependent on any proper subset of X.

For example, in the relation S, the attribute CITY is functionally dependent on the composite
attribute (S#, STATUS); however, it is not fully functionally dependent on S# alone.

Now, once we have understood the concept of functional dependency the next start is to understand
first, second and third normal forms.

S SP
S# | SNAME | STATUS | CiTY S# | P# | QTY
S1 | Smith 20 London S1 | P1 [300
S2 | Jones 10 Paris S1 | P2 | 200
S3 | Blake 30 Paris S1 | P3| 400
S4 | Clark 20 London S1 | P4 | 200
S5 | Adams | 30 Athens S1 | P5 (100
. S1 | P6 | 100
P S2 | P1 | 300
P# | PNAME | COLOR | CITY S2 | P2 | 400
P1 | Nut Red London S3 | P2 | 200
P2 { Bolt Green Paris S4 | P2 | 200
P3 | Screw Blue Rome S4 | P4 | 300
P4 | Screw Red London S4 | P5 | 400
P5 | Cam Blue Paris
P6 | Cog Red London

Figure 5.2: Supplier- Parts database: Relational view

5. First Normal Form

A relation R is the first normal form (INF) if and only if all the underlying domains contain atomic

values only.

A relation that is in first normal form has a structure that is undesirable for a number of responses.
To illustrate the point, let us suppose that information concerning supplier and shipments, rather than
being split into two separate relations (S and SP) is lumped together into a single relation FIRST
(S#, STATUS, CITY, P#, QTY). Figure 5.3 is the functional dependency diagram for the relation

first tabulated in figure 5.4.

l S# l-——>{ Statusl

— Qty

Figure 5.3: Functional dependencies in relation S, P and SP

FIRST
St 20 | London | P1 | 300
St 20 London | P2 | 200
S1 20 London | P3 { 400
S1 20 London | P4 | 200
St 20 London | P5 | 100
St 20 London | P6 | 100
S2 10 Paris | P1 | 300
S2 10 Paris | P2 | 400
S3 10 Paris | P2 | 200
S4 20 London | P2 { 200
S4 20 London | P4 | 300
S4 20 Ltondon | P5 | 400

Figure 5.4: Samplev tabulation of FIRST

Qty

P

City

I

Figure 5.5: Functional dependencies in the relation FIRST

To any database there are three basic operations of insertion, deletion and updation. Concentrating
on the association between suppliers and cities that is functional dependency of CITY on S#,
problems occur with each of three basic operations.

» Inserting

We cannot enter the fact that a particular supplier is located in a particular city until that supplier
supplies at least one part. In figure 5.7 the tabulation doesn’t show that supplier S5 is located in
Athens. The reason is that, until S5 supplies some part, we have no appropriate primary key value.
Here we observe the Integrity rule which states “No component of a primary key value may be null”.
In relation FIRST, primary key values consist of a supplier number and a part number.

» Deleting

If we delete the only first tuple for a particular supplier, we destroy not only the shipment connecting
that supplier to some part but also the information that the supplier is located in a particular city. For
example, if we delete the FIRST tuple with S# values S3 and P# value P2, we loose the information
that S3 is locate in pairs.

» Updaiing ~

The city value for a given supplier appears in FIRST many times, in general. This redundancy
cause’s update problem. For example, if supplier S1 moves from London to Amsterdam, we are
faced with either the problem of searching the FIRST relation to find every tuple connecting S1 and
London or the possibility of productivity an inconsistent result. The solution to the above problem is
to replace the relation FIRST by the two relations SECOND (S#, STATUS, CITY) and
SP (S#, P#, QTY).

Figure 5.6 shows the functional dependencies in the relations SECOND and SP and figure 5.7 shows
the sample tabulation of SECOND and SP which has over come the above problems.

Qty

E H
3t

Figure 5.6

S# | STATUS | CITY SP | S# | P# | QTY

S1 20 London S1]P1| 300
S2 10 Paris St | P2 200
S3 10 Paris S1 | P3| 400
S4 20 London S1] P4 | 200
S5 30 Athens S1|P5] 100
‘ St |P6| 100

S2 | P1| 300

S2 | P2 | 400

S3 | P2 200

S4 | P2 | 200

S4 1 P4 | 300

S4 | P5°| 400

Figure 5.7

6. Second Normal Form

A relation R is in second Normal form (2NF) if and only if it is INF and every non key attribute is
fully dependent on the primary key. By fully dependency we mean that if any attribute from key
attribute is removed, the dependency is not preserved.

Non Key: An attribute is non key if it doesn’t participate in the primary key.
Relations SECOND and SP are both 2NF
[The primary keys are S# and the combination CS#, P# respectively]

Relation FIRST is not 2NF. A relation that is in first normal form and not in second can always be
reduced to an equivalent collection of 2NF relations.

The reduction of FIRST to the pair (SECOND,SP) is an example of a non loss decomposition since
the original relation can always be recovered by taking the natural join of projections (SECOND,
SP).

The SECONDY/SP structure still causes problems however. Relation SP is satisfactory (SP is in third
normal form)

Relation SECOND, on the other hand, still suffers from a lack of mutual independence among the
non key attributes.

The dependency diagram for SECOND is still “more complex” than 3NF diagram.

To be specific, the dependency of STATUS on S#, even if it is functional is transitive, i.e., via CITY.
Each S# value determines a CITY value, and this in turn determines the STATUS value. This
transitivity leads, once again to difficulties over Update operations.

Though in 2NF there still exists some problems with the three basic operation.

» Inserting
We cannot enter the fact that a particular city has a particular status value.

For example, we cannot state any supplier in Rome must have a status of 50 until we have some
supplier located in that city.

» Deleting

If we delete the only SECOND tuple for particular city, we déstroy not only the information for the
supplier concerned but also the information that city has that particular status value.

For example, if we delete the SECOND tuple from S5, we lose the information that the status for
Athens in 30,

» Updating

The status value for a given city appears in SECOND manage, in general. Thus if we need to change
the status value for London from 20 to 30, we are faced with either the problem of searching the
SECOND relation to find every tuple for London or the possibility of producing an inconsistent
result.

Again the solution to the problems is to replace the original relation (SECOND)- by two projections,
in the case (SC, CS#, CITY) and CS (CITY, STATUS).

7. Third Normal Form

Third Normal Form is applied when the relations are in 2NF and there is any non-key attribute that
depends transitively on the primary key. The attributes are said to be transitively dependent
if PK - A and A — B. An attribute A is dependent on attribute PK (Primary Key) and B is
dependent on A implies that B is transitively dependent on PK PK —» B.

EmpNo. | EmpName | AreaMarket]| Vehicle | Vehicle Allowance

121 Manoj Taluka Sumo Diesel Bill — 80/
122 Neelesh City Scooter | Petrol Bill — 70/-
123 Vikram South region | Public__| Ticket Amount — 100/-

Here EnipNo.— (EmpName, AreaMarket, Vehicle, Vehicle_allowance)
But, EmpNo.;é Vehicle And Vehicle — Vehicle_Allowance

So EmpNo.— Vehicle_Allowance

That means Vehicle-Allowance transitively depends on Emp-No. To transform the relations to 3NF,
the transitive dependencies if any are removed by decomposing the relations and referring them by a
Primary Key attribute of new relation. The 3NF will be

Emp. (Emp-No., Emp-Name, Area-Market, Vehicle-No.)
Vehicle (Vehicle-No., Vehicle-Name, Allowance)

8. Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form states mathematically that: A relation R is said to be in BCNF if
whenever X — A holds in R, and A is not in X, then X is a candidate key for R.BCNF covers very
specific situations where 3NF misses inter-dependencies between non-key (but candidate key)
attributes.

Typically, any relation that is in 3NF is also in BCNF. However, a 3NF relation won't be in BCNF if
(a) there are multiple candidate keys, (b) the keys are composed of multiple attributes, and (c) there
are common attributes between the keys.

Example 1: Consider the following relation

Sports Club
Member Sport | Coach
Anil Rao Soccer | Kurian

Vivek Das | Soccer | Kurian
Raju Pai Hockey | Rao
Umesh Vaz | Soccer | Kurian
Rajesh lyer | Hockey | Rane

The candidates for primary key are:
. Member + Sport
. Member + Coach

because either of these uniquely identifies the row.

The attribute coach is not a candidate for Primary key even though the attribute sport is fully —
functlonally dependent on it, since a Coach is associated with only one sport (Assumptwn a Coach is
an ‘expert’ in one sport, though he can coach other sports also).

Since the relation has an attribute (Coach) on which some other attribute is fully-functionally
dependent, but is not a candidate for the primary key, the above relation is NOT FULLY
NORMALISED. The above relation will result in the following problems.

. If Mr. Rajesh Iyer withdraws from the membership, information about coach Rane is also
lost.

. If Coach Kurian’s name is misspelt and has to be corrected to Kurien, the update needs to be
done in all the rows.

A better implementation of the situation can be made through the following relations.

a. MEMBER_SPORT b. SPORTS_COACH
MEMBER SPORT SPORT COACH
Anil Rao Soccer Soccer Kurian
Vivek Das Soccer Hockey Rao

By this process we have reduced the 3NF to BCNF by ensuring that they are in 3NF for every
Candidate key.

Basically, a humorous way to remember BCNF is that all functional dependencies are: "The key, the
whole key, and nothing but the key, so help me Codd."

9. Examples

In this section various examples of normalization has been illustrated that will give better
understanding to the concept of normalization.

1. Before Normalization — Example

See Sales Order from below:

Sales Order
Fiction Company
202 N. Main
Mahattan, KS 66502
Customer Number: 1001 Sales Order Number 405
Customer Name: ABC Company Sales Order Date 2/1/2000
Customer Address: 100 Points Clerk Number: 210
Manhattan, KS 66502 Clerk Name: Martin Lawrence
item Ordered Description Quantity | Unit Price Total
800 widgit small 40 60.00 2400.00
801 tingimalligger 20 20.22 400.00
805 thingibob 10 100.00 1000.00
Order Total 3,800.00

Fields in the original data table will be as follows:

SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName, ItemNo,
Description, Qty, UnitPrice

Think of this as the baseline — one large table

Normalization: First Normal Form

. Separate Repeating Groups into New Tables.

. Repeating Groups Fields that may be repeated several times for one document/entity.
. Create a new table containing the repeating data.

The primary key of the new table (repeating group) is always a composite key; usually document
number and a field uniquely describing the repeating line, like an item number.

First Normal Form Example

The new table is as follows:

SalesOrderNo, ItemNo, Description, Qty, UnitPrice

The repeating fields will be removed from the original data table, leaving the following.
SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName
These two tables are a database in first normat form.

What if we did not Normalize the Database to First Normal Form?
Repetition of Data — SO Header data repeated for every line in sales order.
Normalization: Second Normal Form

° Remove Partial Dependencies.

. Functional Dependency: The value of one attribute in a table is determined entirely by the
value of another.

. Partial Dependency: A type of functional dependency where an attribute is functionally
dependent on only part of the primary key (primary key must be a composite key).

. Create separate table with the functionally dependent data and the part of the key on which it
depends. Tables created at this step will usually contain descriptions of resources.

Second Normal Form Example

The new table will contain the following fields:

ItemNo, Description

All of these fields except the primary key will be removed from the original table. The primary key
will be left in the original table to allow linking of data:

SalesOrderNo, ItemNo, Qty, UnitPrice

Never treat price as dependent on item. Price may be different for different sales orders (discounts,
special customers, etc.)

Along with the unchanged table below, these tables make up a database in second normal form:

SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName

What if we did not Normalize the Database to Second Normal Form?

. Repetition of Data: Description would appear every time we had an order for the item.

. Delete Anomalies: All information about inventory items is stored in the SalesOrderDetail
table. Delete a sales order, delete the item.

. Insert Anomalies: To insert an inventory item, must insert sales order.

. Update Anomalies: To change the description, must change it on every SO.
Normalization: Third Normal Form

. Remove transitive dependencies.

. Transitive Dependency: A type of functional dependency where an attribute is functionally
dependent on an attribute other than the primary key.
Thus its value is only indirectly determined by the primary key.

° Create a separate table containing the attribute and the fields that are functionally dependent
on it. Tables created at this step will usually contain descriptions of either resources or agents.
Keep a copy of the key attribute in the original file.

Third Normal Form Example

The new tables would be:

CustomerNo, CustomerName, CustomerAdd
ClexrkNo, ClerkName

All of these fields except the primary key will be removed from the original table. The primary key
‘will be left in the original table to allow linking of data as follows:
SalesOrderNo, Date, CustomerNo, ClerkNo

Together with the unchanged tables below, these tables make up the database in third normal form.

ItemNo, Description
SalesOrderNo, ItemNo, Qty, UnitPrice

What if we did not Normalize the Database to Third Normal Form?
. Repetition of Data: Detail for Cust/Clerk would appear on every SO

° Delete Anomalies: Delete a sales order, delete the customer/clerk
] Insert Anomalies: To insert a customer/clerk, must insert sales order.

° Update Anomalies: To change the name/address, etc, must change it on every SO.

Completed Tables in Third Normal Form

Customers: CustomerNo, CustomerName, CustomerAdd
Clerks: ClerkNo, ClerkName ’

Inventory Items: ItemNo, Description

Sales Orders: SalesOrderNo, Date, CustomerNo, ClerkNo
SalesOrderDetail: SalesOrderNo, ItemNo, Qty, UnitPrice

2. Assumption: A customer can have multiple orders but an order can be for only
1 product. CustName and OrderNo preassigned as keys.

ONF

CUSTOMER ORDER(CustName, OrderNo, ProdNo, ProdDesc, Qty, CustAddress,
DateOrdered)

“1NF - remove multivalued dependencies

CUSTOMER (CustName, CustAddress) ORDER (CustName, OrderNo, ProdNo,
ProdDesc, Qty, DateOrdered)

2NF - remove partial dependencies

CUSTOMER (CustName, CustAddress)
CUSTOMER ORDER (CustName, OrderNo)
ORDER (OrderNo, ProdNo, ProdDesc, Qty, DateOrdered)

3NF - remove transitive dependencies

CUSTOMER (CustName, CustAddress)

CUSTOMER ORDER (CustName, OrderNo)

ORDER (OrderNo, ProdNo, Qty, DateOrdered)
PRODUCT (ProdNo, ProdDesc)

BCNF - resolve intrakey dependencies

CUSTOMER (CustName, CustAddress)CUSTOMER ORDER (CustName, OrderNo) -
CustName becomes just a foreign key ORDER
(OrderNo, ProdNo, Qty, DateOrdered)PRODUCT (ProdNo, ProdDesc)

3. Consider the following unnormalized table

1022 Jones 412 101-07 | 143-01 | 159-02

4123 Smith 216 201-01 | 211-02 | 214-01

First Normal Form: No Repeating Groups

Tables should have only two dimensions. Since one student has several classes, these classes should
be listed in a separate table.- Fields Classl, Class2, & Class3 in the above record are indications of
design trouble.

Spreadsheets often use the third dimension, but tables should not.

Another way to look at this problem: with a one-to-many relationship, do not put the one side and
the many side in the same table. Instead, create another table in first normal form by eliminating the
repeating group (Class#), as shown below: . ’

Jones 412 101-07

1022

1022 Jones 412 143-01
1022 Jones 412 159-02
4123 Smith 216 201-01
4123 Smith 216 211-02
4123 Smith 216 214-01

Second Normal Form: Eliminate Redundant Data

Note the mulfiple Class# values for each Student# value in the above table. Class# is not functionally
dependent on Student# (primary key), so this relationship is not in second normal form.

The following two tables demonstrate second normal form:

Students:

4123 Smith

Registration

1022 101-07,
1022 143-01
1022 159-02
4123 201-01
4123 211-02
4123 214-01

Third Normal Form: Eliminate Data Not Dependent On Key

In the last example, Adv-Room (the advisor's office number) is functionally dependent on the

Advisor attribute.

The solution is to move that attribute from the Students table to the Faculty table, as shown below:

Students:
" 1022 Jones
4123 Smith
Faculty
Jones | 412 42
Smith 216 42
Solved Examples
1. Consider the following entities and their relationship

Doctor (dno, dname, city)
Patient (opdno, pat_name, addr, disease)

The relation between Patient and Doctor is many-to-many.

Create a RDB in 3NF and solve any five of the following:

Insert a row in doctor table.

™o Aar TR

Display names of doctors living in ‘Gujarat’ city.
Add ‘discharge_date’ column to patient table.
Find the names of patients who are treated by ‘Dr. Mishra’.
Count the number of patients suffering from ‘Malaria’.
Display total no. of patients treated by each doctor.

Solution

RDB in 3NF will be as follows:
Doctor (dno, dname, city)

Patient (opdno, pat_name, addr, disease)

Docpat(dno,opdno)

a.

Insert a row in doctor table.

Insert into doctor wvalues (101, 'Mr. Yewole',
Display names of doctors living in ‘Gujarat’ city.

Select dname

From doctor

Where city = 'Gujarat';

Add “discharge_date’ column to patient table.

Alter table patient add discharge_date date;
Find the names of patients who are treated by ‘Dr. Mishra’.
Select pat_name

From doctor,patient,docpat

Where doctor.dno=docpat.dno

and patient.opdno=docpat.opdno

and dname= ‘Dr. Mishra‘’;

Count the number of patients suffering from ‘Malaria’.
Select count(*) as total

From patient

Where disease=‘Malaria“;

Display total no. of patients treated by each doctor.
Select dname, count (docpat.opdno)

From patient,doctor,docpat

Where doctor.dno=docpat.dno and
patient.opdno=docpat .opdno

Group by (dname);

'Pune');

Daoctor (dno, dname, city)

The relation between
many_to_many.

Patient

2. Consider the following entities and their relationship:

Patient (opdno, pat_name, addr, disease)

and Doctor

fiS

Create a RDB in 3NF and solve any five of the following:
Insert a row in Doctor Table.

Find names of patients who are treated by 'Dr. Deshpande'.
Display names of doctors who live in 'Pune’ city.

Count number of patients suffering from 'Cancer’.

Add ‘Discharge date' Column to Patient Table.

f. Display total no. of patients treated by each doctor.

.

e 0 T

Solution

To create RDB in 3 NF third table is created having primary key of doctor ant patient table. So
following is the RDB in 3 NF

Doctor (dno, dname, city)
Patient (opdno, pat-name, addr, disease)
Docpat (dno,opdno)

a.

Insert a row in Doctor Table.
Insert into doctor (dno, dname, city) wvalues (101, 'Mr.Kale', 'Pune');

Find names of patients who are treated by 'Dr. Deshpande'.
Select pat_name
From patient,doctor,docpat
Where docpat.opdno=patient.opdno and
docpat.dno=doctor.dno and
dname="'Dr. Deshpande’';

Display names of doctors who live in 'Pune’ city.
Select dname

From doctor

Where city='Pune';

Count number of patients suffering from 'Cancer’
Select count(*) as total_ patients

From patient
Where disease='cancer';

Add 'Discharge date' Column to Patient Table.
Alter table patient
Add (discharge_date date not null);

Display total no. of patients treated by each doctor.

Select dname, count (pno)

From doctor, patient,docpat

Where patient.opdno=docpat.opdno and doctor.dno=docpat.dno
Group by (dname);

3. Consider the following entities and their relationships:
Book(bno,bname,publication,price)

Author(ano,name,addr)

Book and author are related with many to many
relationship.

Create RDB in 3NF and solve any five of following:

a. Insert a row in Author table.

b. Count total number of books written by ‘Balguruswamy’.

c. Add ‘publish_year’(p_year)column to Book table, use alter table command.

d. Update book_name from ‘DBMS’ to ‘RDBMS?’ published by ‘Vision Publication’.
e. Display books published by ‘Nirali Publication’ and written by ‘Mr. Raina’.

f. Display book information whose price is greater than Rs. 300.
Solution
a. Insert into author values (10, 'Balguruswamy', 'California');
b. Select count (bookauthor .bno)

From book,author, bookauthor
Where book.bno=bookauthor.bno and author.ano=boockauthor.ano
and aname= ‘Balguruswamy’;

C. Alter table book add p_year(int);

d. Update book set bname="'RDBMS' where bname="'DBMS' and
publication='Vision Publication’; .

€. Select book.bno, bname from book, author,bookauthor where
book.bno=bokauthor.bno and author.ano=bookauthor.ano and
publication=‘Nirali Publication’ and aname=‘Mr.Raina‘;

f. Select *from book where price>300;

4. Consider the following entities and their relationship:

Employee (emp_id, emp_name, desg, salary)

Project (proj_id, proj_name)

Employee .and Project are related with many to many
relationship with a descriptive attribute ‘hrs_worked’.
Create a RDB in 3NF and solve the following queries by using SQL: (Any 5)

a. Insert a row in project table.

b. Display employee details working as ‘Project Leader’.

c. Display no. of employees working on ‘JAVA’ Project.

Solution

d.
e.
f.

Add ‘completion_date’ column to project table. Use alter command.
Display total number of hours worked by each employee.
Display projects on which ‘Mr. Amit S.” has worked.

The relation is many to many with attribute hrs-worked.

.. Relational table will be:

emp_proj (emp_id, proj_id, worked_hrs)

i.

il

iit.

Insert into project values (101, “C++7);

Select * from employee where employee.desg = ‘project leader’;

Select count (emp_proj.emp_id)

From employee, project, emp_proj Where employee.emp_id =
emp_proj.emp_id and project.proj_id = emp_proj.proj_id and

project.proj_name = “JAVA”;

iv. Alter table project add.comp_date date;

V. Select sum(emp_proj.hrs_worked), employee.empname From emp_proj,
employee Where emp_proj. emp_id = employee.emp_id
Group by emp_proj.emp_1id;

vi. Select proiject.proj_name from employee, project, emp_proj Where
employee.emp_id = emp_proj.emp_id and project.proj_id =
emp_proj.proj_id and employee.empname = “Mr. Amit S.”;

s.

Consider the following entities and their relationship:

Game(gno, gname, no_of_player, coachname)
player(pno, pname)

Game and Player related with many to many relationship.

Create RDB in 3NF and solve any five of the following:

a.
b.
c.
d.

€.

Insert a row in game table.

List total number of players playing ‘Cricket’.

Display players having coach as ‘Mr. Sharma’.

Add ‘birthdate’ column to player table. Use alter table command.
List all games played by ‘Rahul’.

Count total number of players where coach name is ‘Mx. Chappell’.

Solution

RDB 3NF

Game(gno, gnarﬁe,no_of_player,co achname)

Player(pno,pname)

Game_player(gno,pno)

a.

-

Insert a row in game table.
Insert into game values (gl,9”cricket”, 11,"Gaikwad”);

List total number of players playing ‘Cricket’.

Select distinct(count(*)) from player;

Display players having coach as ‘Mr. Sharma’.

Select p.pname from player p, game_player gp, game g

Where gp.pno=p.pno and gp.gno=g.gno and g.coachname="Mr. Sharma”;
Add ‘birthdate’” column to player table. Use alter table command.

Alter table player add birthdate date;

List all games played by ‘Rahul’.

Select g.gno,g.gname,p.pname from game g, player p, game_player dgp
where g.gno=gp.gno and p.pno=gp.pno and p.pname="Rahul”;

Count total number of players where coach name is ‘Mr. Chappell’.

Select count(no_of_player) from player where coachname="Mr.
Chappell”;

6. Consider the following entities and their relationship:
game (gno, gname, no_of_player, coachname)

player (pno, pname)
Game and Player are related with many to many
relationship. .

Create RDB in 3NF and solve the following queries by
using SQL: (any five) ‘

a Insert a row in game table.

b. List total number of players playing “Cricket”.

c Add birthdate column to player table. Use alter table command.

d. Count total no. of players whose coach is “Mr. Desouza”,

Solution

3NF

game(gno, gname, no_of_player, coachname)

dgement Systems

. Belational Database D

player(pno, ptiame)

gp(pno,gno)
a. Insert a row in game table.
Insert into game (gno, gname, no_of_player, coachname)
values (‘gl’, ‘cricket’, 15, “‘Anshuman’);)
b. List total number of players playing “Cricket”.
Select count (no_of_player) from game;
c. Add birthdate column to player table. Use alter table command.
Alter plaver add column bdate date;
d. Count total no. of players whose coach name is “Mr. Desouza”.
Select count (no_of_player) from game where coachname= “Mr. Desouza”

Summary

+ Normalization is the useful aid in the design process of a database. Normalization theory is
built around the concept of normal forms. A relation is said to be in a particular normai form.

e |fit satisfies a certain specified set of constraints. The constraints can be used as guide for the
reduction process. There are four projection of the original 1NF relation to eliminate every non
fall functional dependencies. ‘

* This will produce the collection of 2NF relations. Take three projections of these 2NF relations
to eliminate any transitive dependencies. This will produce a collection of 3NF relation.

e The general objective of the reduction process is to reduce redundancy, and hence to avoid
certain problems over update operations. Normalization guidelines ever only guidelines;
sometimes these are good reasons for not normalizing.

¢ Also numerous, MNF have defined other than 1NF, 2NF & 3NF is BCNF, 4NF, PJ/NF also known
as 5NF although there is infinite form to state the number of normal forms, 5NF is actually
“final” normal form in a special case, i.e., the ultimate normal form with respect to projection
and join. ‘

Database Management Systers .-

[Oct2012- M
 [Oct2012- sM

Umszéfz Um toﬂowmg entmes and hei
Student{sno ,sname, uty,class)

uubjert(sub no. sub name)

SQL

S

i

1l |
iv.
Wi ‘
Cnnha e viz anlay the total number of student.fr m
[Apr1231.0ct i 4Ml 3. Write a short note on Normalization. :
[Apr.2012-- 801 4. Consider the following entities and the1r reiatmnsmp }

Doctor {dno, dname, city) .
Patient (opdnospat_name, addr, dxseasa)
“The relation between Patient and Doctor is many-
- Create a RDB in 3NF and solve any ﬁva of the fo
- a. Insert arow int doctor table.
b. Display names of doctors hvmg in “Gu;

¢ Add ‘discharge_date’ column to paﬂent b
- d. Find the names of paﬂentq who are treated
' Mishra’, v
e. Count the number of patlents sutfenng fr"
L Lo Display total no. of patients treatedb (
 lost2011-8M 5. Consider the following entities and their relationshi;
L Doctor {dno, dname, city) e
Patient (opdno, pat_name, addr dxsease) <
Doctor and Patient related with many to maﬂy re
Create RDB in 3NF and solve any five of the follo
a. Insert a row in patients table. -
b. Display names of pauents suffeﬂng
‘BP. : o

Retational Datahase Desigh

anagement Systems

Count the no. of patientsﬁ treated by Dr. Warmal,

Add 'addmit _date’ column to patients tabie.

Display total number of patient treated by cach doctor.

’ (’hange patient address from 'Pune' to ‘Mumbai'.

'nomaheq of Un- normahzed Database. .

fe foﬂowmg entmes and thelr relauomtnp ' [Apr.11,10, Oct. 11,00 - 40}

octor (dno, dname, city) .-

atier t(opdno pat_name, addr, disease) [opregti=i
relation between Patient and Doctor is many_to_many.

tea RDB in 3NF and solve any five of the following:

nsert a row in Doctor Table.

Find names of pments who are treated b y 'Dr.

» Déshpande

_ Display names of docters who live in'Pune’ city,

Count number of patients suffering from ‘Cancer’.

- Add ‘Dmcharoe date’ Column to. Patlent Table

[0cL2010-4M

[0ct2010-8M
Wx ten by ‘Mr Rama
Dlsp}ay book mformatlon whose price is greater than Rs.
00. _ . L
xplain Normahsatlon with example. ' ‘ Apr.2010 - L
nsider the following entities and their relationship: ~ [Apr.2010—4M

ployee (emp_id, emp_name, desg, salary)

ject (proj_id, proj._name)

mployee and Project are related thh many (o many
‘atlonshm with adescnptwe attribute “hrs_worked”,

I

Database Management Systems -, @ ‘4 Relational Database Dssign

: Create a RDB in 3NF and solve the followmg queries by using
SQL: (Any5) -

2. Insertarow m pro;ect table '

b D}&play employee details workmg as ‘Project Leader’.

¢ Display no. of employees working on ‘JAVA’ Project.

do -Add- compleuon date column to project table. Use alter

- command. .
. e Display total number of hours worked by each employee
‘ . ,[OCt'.ZQIOVQ"— m - & Display pleeCtS on which ‘Mr. Amit S.” has worked
[0ct2009- 81 [l o 12 ~ Explain Normalization with example. o

- 13, Consider the followmg entm&q and their relanonsth
o Game(gno, gname, no of,_player, coachname) .
~ player(pno, pname) :
Game and Player related with many to many 1elaaonsh1
Create RDB in 3NF and solve any five of the followmg
Insert a row in game table. : ;
List total number of players playm g ‘Cnckst
Display players having coach as ‘Mr. Sharma
Add ‘birthdate’ column to playel table U
 command.
~ List all games played by ‘Rahul’ '
~ Count total number of players where coac .,
- Chappell’, . S
E_xplam Referential Integmy w1th example o
Explain Nannahzatxon with normal forms.

a0 o

o

[Apr2000-4M 1
[Apr2009 - 4pj 15

 [Apr.2009 - 40 71‘6‘ Explaun Anomalies of Unnormalized Database,
: L&M ‘ Consider the following entities and their relatlonbhlp

ame (gno gname. no of_player, coachname)
player (pno, pname) ~
“Game and Player are related with many to many relatl’
“reate RDB in 3NF and soive the followmg que1 ies by
any five). ; .
oo Insertarow i garne table :
. List total number of piayers playmg “Crxcket”
_ Display all players having coach as “Mr. Sharma
Add blrthdate column to player table Us:
- command. . » , .
. List all games played by;Rahul .
f Count total no. of 1 ,Iayer’ whose coach is “Mr

L R

NOTE

Suggestive Readings:

10.

. Database Management System Tutorial — Tutorials point (2020). Available at:

Database Management System Tutorial (Accessed: 26 December 2020).
What is DBMS? Application, Types, Example, Advantages (2020). Available at:
What is DBMS (Database Management System)? Application, Types & Example

(Accessed: 26 December 2020)

Database (2013). Available at: Database - Wikipedia (Accessed: 26 December 2020).
What is a Database Management System (DBMS)? - Definition from Techopedia
(2020).Available at: What is a Database Management System (DBMS)? - Definition
from Techopedia (Accessed: 26 December 2020).

C.J. Date, An Introduction to Database Systems, Pearson Education, Inc., 8th Edition,
2006.

A. Silberschatz, H. F. Korth and S. Sudarshan, Database System Concepts, Tata
McGraw-Hill, 6th Edition, 2011.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Pearson
Education, Inc., 4th Edition, 2004.

R. Ramakrishnan and J. Gehrke, Database Management Systems, McGraw-Hil, 3rd
Edition, 2007.

H. Garcia-Molina, J. D. Ullman and J. Widom, Database Systems: The Complete
Book, Pearson Education, Inc., 2nd Edition, 2009.

G. Harrison and S. Feuerstein, MySQL stored procedure programming. O’Reilly
Media, Inc., 2006.

	8bcbb269e0b209b21f92ba5d84c7c88ec634e15fa96710b7aa6680c3c4133cd7.pdf
	4c8bccaaa88e60df38ad9175d656b5f28cdb09c4b04fd31220ebc0a95bae6e38.pdf
	Microsoft Word - syllabus DBMS
	801d4af5c6736db5710d283bb246b88470ac07b4e8416655965f2c2a2ec21581.pdf
	Microsoft Word - Introduction to Database Management System BCA SEM-2

